Displaying 1 - 6 of 6
-
Ronderos, C. R., Zhang, Y., & Rubio-Fernandez, P. (2024). Weighted parameters in demonstrative use: The case of Spanish teens and adults. In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (
Eds. ), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 3279-3286).Additional information
link to eScholarship -
Sander, J., Çetinçelik, M., Zhang, Y., Rowland, C. F., & Harmon, Z. (2024). Why does joint attention predict vocabulary acquisition? The answer depends on what coding scheme you use. In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (
Eds. ), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 1607-1613).Abstract
Despite decades of study, we still know less than we would like about the association between joint attention (JA) and language acquisition. This is partly because of disagreements on how to operationalise JA. In this study, we examine the impact of applying two different, influential JA operationalisation schemes to the same dataset of child-caregiver interactions, to determine which yields a better fit to children's later vocabulary size. Two coding schemes— one defining JA in terms of gaze overlap and one in terms of social aspects of shared attention—were applied to video-recordings of dyadic naturalistic toy-play interactions (N=45). We found that JA was predictive of later production vocabulary when operationalised as shared focus (study 1), but also that its operationalisation as shared social awareness increased its predictive power (study 2). Our results emphasise the critical role of methodological choices in understanding how and why JA is associated with vocabulary size. -
Yang, J., Zhang, Y., & Yu, C. (2024). Learning semantic knowledge based on infant real-time. In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (
Eds. ), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 741-747).Abstract
Early word learning involves mapping individual words to their meanings and building organized semantic representations among words. Previous corpus-based studies (e.g., using text from websites, newspapers, child-directed speech corpora) demonstrated that linguistic information such as word co-occurrence alone is sufficient to build semantically organized word knowledge. The present study explored two new research directions to advance understanding of how infants acquire semantically organized word knowledge. First, infants in the real world hear words surrounded by contextual information. Going beyond inferring semantic knowledge merely from language input, we examined the role of extra-linguistic contextual information in learning semantic knowledge. Second, previous research relies on large amounts of linguistic data to demonstrate in-principle learning, which is unrealistic compared with the input children receive. Here, we showed that incorporating extra-linguistic information provides an efficient mechanism through which semantic knowledge can be acquired with a small amount of data infants perceive in everyday learning contexts, such as toy play.Additional information
link to eScholarship -
Caplan, S., Peng, M. Z., Zhang, Y., & Yu, C. (2023). Using an Egocentric Human Simulation Paradigm to quantify referential and semantic ambiguity in early word learning. In M. Goldwater, F. K. Anggoro, B. K. Hayes, & D. C. Ong (
Eds. ), Proceedings of the 45th Annual Meeting of the Cognitive Science Society (CogSci 2023) (pp. 1043-1049).Abstract
In order to understand early word learning we need to better understand and quantify properties of the input that young children receive. We extended the human simulation paradigm (HSP) using egocentric videos taken from infant head-mounted cameras. The videos were further annotated with gaze information indicating in-the-moment visual attention from the infant. Our new HSP prompted participants for two types of responses, thus differentiating referential from semantic ambiguity in the learning input. Consistent with findings on visual attention in word learning, we find a strongly bimodal distribution over HSP accuracy. Even in this open-ended task, most videos only lead to a small handful of common responses. What's more, referential ambiguity was the key bottleneck to performance: participants can nearly always recover the exact word that was said if they identify the correct referent. Finally, analysis shows that adult learners relied on particular, multimodal behavioral cues to infer those target referents. -
Chen, C.-h., Zhang, Y., & Yu, C. (2018). Learning object names at different hierarchical levels using cross-situational statistics. Cognitive Science, 42(S2), 591-605. doi:10.1111/cogs.12516.
Abstract
Objects in the world usually have names at different hierarchical levels (e.g., beagle, dog, animal). This research investigates adults' ability to use cross-situational statistics to simultaneously learn object labels at individual and category levels. The results revealed that adults were able to use co-occurrence information to learn hierarchical labels in contexts where the labels for individual objects and labels for categories were presented in completely separated blocks, in interleaved blocks, or mixed in the same trial. Temporal presentation schedules significantly affected the learning of individual object labels, but not the learning of category labels. Learners' subsequent generalization of category labels indicated sensitivity to the structure of statistical input. -
Slone, L. K., Abney, D. H., Borjon, J. I., Chen, C.-h., Franchak, J. M., Pearcy, D., Suarez-Rivera, C., Xu, T. L., Zhang, Y., Smith, L. B., & Yu, C. (2018). Gaze in action: Head-mounted eye tracking of children's dynamic visual attention during naturalistic behavior. Journal of Visualized Experiments, (141): e58496. doi:10.3791/58496.
Abstract
Young children's visual environments are dynamic, changing moment-by-moment as children physically and visually explore spaces and objects and interact with people around them. Head-mounted eye tracking offers a unique opportunity to capture children's dynamic egocentric views and how they allocate visual attention within those views. This protocol provides guiding principles and practical recommendations for researchers using head-mounted eye trackers in both laboratory and more naturalistic settings. Head-mounted eye tracking complements other experimental methods by enhancing opportunities for data collection in more ecologically valid contexts through increased portability and freedom of head and body movements compared to screen-based eye tracking. This protocol can also be integrated with other technologies, such as motion tracking and heart-rate monitoring, to provide a high-density multimodal dataset for examining natural behavior, learning, and development than previously possible. This paper illustrates the types of data generated from head-mounted eye tracking in a study designed to investigate visual attention in one natural context for toddlers: free-flowing toy play with a parent. Successful use of this protocol will allow researchers to collect data that can be used to answer questions not only about visual attention, but also about a broad range of other perceptual, cognitive, and social skills and their development.
Share this page