Displaying 1 - 4 of 4
-
Caplan, S., Peng, M. Z., Zhang, Y., & Yu, C. (2023). Using an Egocentric Human Simulation Paradigm to quantify referential and semantic ambiguity in early word learning. In M. Goldwater, F. K. Anggoro, B. K. Hayes, & D. C. Ong (
Eds. ), Proceedings of the 45th Annual Meeting of the Cognitive Science Society (CogSci 2023) (pp. 1043-1049).Abstract
In order to understand early word learning we need to better understand and quantify properties of the input that young children receive. We extended the human simulation paradigm (HSP) using egocentric videos taken from infant head-mounted cameras. The videos were further annotated with gaze information indicating in-the-moment visual attention from the infant. Our new HSP prompted participants for two types of responses, thus differentiating referential from semantic ambiguity in the learning input. Consistent with findings on visual attention in word learning, we find a strongly bimodal distribution over HSP accuracy. Even in this open-ended task, most videos only lead to a small handful of common responses. What's more, referential ambiguity was the key bottleneck to performance: participants can nearly always recover the exact word that was said if they identify the correct referent. Finally, analysis shows that adult learners relied on particular, multimodal behavioral cues to infer those target referents. -
Tsutsui, S., Wang, X., Weng, G., Zhang, Y., Crandall, D., & Yu, C. (2022). Action recognition based on cross-situational action-object statistics. In Proceedings of the 2022 IEEE International Conference on Development and Learning (ICDL 2022).
Abstract
Machine learning models of visual action recognition are typically trained and tested on data from specific situations where actions are associated with certain objects. It is an open question how action-object associations in the training set influence a model's ability to generalize beyond trained situations. We set out to identify properties of training data that lead to action recognition models with greater generalization ability. To do this, we take inspiration from a cognitive mechanism called cross-situational learning, which states that human learners extract the meaning of concepts by observing instances of the same concept across different situations. We perform controlled experiments with various types of action-object associations, and identify key properties of action-object co-occurrence in training data that lead to better classifiers. Given that these properties are missing in the datasets that are typically used to train action classifiers in the computer vision literature, our work provides useful insights on how we should best construct datasets for efficiently training for better generalization. -
Zhang, Y., & Yu, C. (2022). Examining real-time attention dynamics in parent-infant picture book reading. In J. Culbertson, A. Perfors, H. Rabagliati, & V. Ramenzoni (
Eds. ), Proceedings of the 44th Annual Conference of the Cognitive Science Society (CogSci 2022) (pp. 1367-1374). Toronto, Canada: Cognitive Science Society.Abstract
Picture book reading is a common word-learning context from which parents repeatedly name objects to their child and it has been found to facilitate early word learning. To learn the correct word-object mappings in a book-reading context, infants need to be able to link what they see with what they hear. However, given multiple objects on every book page, it is not clear how infants direct their attention to objects named by parents. The aim of the current study is to examine how infants mechanistically discover the correct word-object mappings during book reading in real time. We used head-mounted eye-tracking during parent-infant picture book reading and measured the infant's moment-by-moment visual attention to the named referent. We also examined how gesture cues provided by both the child and the parent may influence infants' attention to the named target. We found that although parents provided many object labels during book reading, infants were not able to attend to the named objects easily. However, their abilities to follow and use gestures to direct the other social partner’s attention increase the chance of looking at the named target during parent naming. -
Zhang, Y., Amatuni, A., Crain, E., & Yu, C. (2020). Seeking meaning: Examining a cross-situational solution to learn action verbs using human simulation paradigm. In S. Denison, M. Mack, Y. Xu, & B. C. Armstrong (
Eds. ), Proceedings of the 42nd Annual Meeting of the Cognitive Science Society (CogSci 2020) (pp. 2854-2860). Montreal, QB: Cognitive Science Society.Abstract
To acquire the meaning of a verb, language learners not only need to find the correct mapping between a specific verb and an action or event in the world, but also infer the underlying relational meaning that the verb encodes. Most verb naming instances in naturalistic contexts are highly ambiguous as many possible actions can be embedded in the same scenario and many possible verbs can be used to describe those actions. To understand whether learners can find the correct verb meaning from referentially ambiguous learning situations, we conducted three experiments using the Human Simulation Paradigm with adult learners. Our results suggest that although finding the right verb meaning from one learning instance is hard, there is a statistical solution to this problem. When provided with multiple verb learning instances all referring to the same verb, learners are able to aggregate information across situations and gradually converge to the correct semantic space. Even in cases where they may not guess the exact target verb, they can still discover the right meaning by guessing a similar verb that is semantically close to the ground truth.
Share this page