Yayun Zhang

Publications

Displaying 1 - 4 of 4
  • Ronderos, C. R., Zhang, Y., & Rubio-Fernandez, P. (2024). Weighted parameters in demonstrative use: The case of Spanish teens and adults. In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 3279-3286).
  • Sander, J., Çetinçelik, M., Zhang, Y., Rowland, C. F., & Harmon, Z. (2024). Why does joint attention predict vocabulary acquisition? The answer depends on what coding scheme you use. In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 1607-1613).

    Abstract

    Despite decades of study, we still know less than we would like about the association between joint attention (JA) and language acquisition. This is partly because of disagreements on how to operationalise JA. In this study, we examine the impact of applying two different, influential JA operationalisation schemes to the same dataset of child-caregiver interactions, to determine which yields a better fit to children's later vocabulary size. Two coding schemes— one defining JA in terms of gaze overlap and one in terms of social aspects of shared attention—were applied to video-recordings of dyadic naturalistic toy-play interactions (N=45). We found that JA was predictive of later production vocabulary when operationalised as shared focus (study 1), but also that its operationalisation as shared social awareness increased its predictive power (study 2). Our results emphasise the critical role of methodological choices in understanding how and why JA is associated with vocabulary size.
  • Yang, J., Zhang, Y., & Yu, C. (2024). Learning semantic knowledge based on infant real-time. In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 741-747).

    Abstract

    Early word learning involves mapping individual words to their meanings and building organized semantic representations among words. Previous corpus-based studies (e.g., using text from websites, newspapers, child-directed speech corpora) demonstrated that linguistic information such as word co-occurrence alone is sufficient to build semantically organized word knowledge. The present study explored two new research directions to advance understanding of how infants acquire semantically organized word knowledge. First, infants in the real world hear words surrounded by contextual information. Going beyond inferring semantic knowledge merely from language input, we examined the role of extra-linguistic contextual information in learning semantic knowledge. Second, previous research relies on large amounts of linguistic data to demonstrate in-principle learning, which is unrealistic compared with the input children receive. Here, we showed that incorporating extra-linguistic information provides an efficient mechanism through which semantic knowledge can be acquired with a small amount of data infants perceive in everyday learning contexts, such as toy play.

    Additional information

    link to eScholarship
  • Zhang, Y., Amatuni, A., Crain, E., & Yu, C. (2020). Seeking meaning: Examining a cross-situational solution to learn action verbs using human simulation paradigm. In S. Denison, M. Mack, Y. Xu, & B. C. Armstrong (Eds.), Proceedings of the 42nd Annual Meeting of the Cognitive Science Society (CogSci 2020) (pp. 2854-2860). Montreal, QB: Cognitive Science Society.

    Abstract

    To acquire the meaning of a verb, language learners not only need to find the correct mapping between a specific verb and an action or event in the world, but also infer the underlying relational meaning that the verb encodes. Most verb naming instances in naturalistic contexts are highly ambiguous as many possible actions can be embedded in the same scenario and many possible verbs can be used to describe those actions. To understand whether learners can find the correct verb meaning from referentially ambiguous learning situations, we conducted three experiments using the Human Simulation Paradigm with adult learners. Our results suggest that although finding the right verb meaning from one learning instance is hard, there is a statistical solution to this problem. When provided with multiple verb learning instances all referring to the same verb, learners are able to aggregate information across situations and gradually converge to the correct semantic space. Even in cases where they may not guess the exact target verb, they can still discover the right meaning by guessing a similar verb that is semantically close to the ground truth.

Share this page