Using HMMs To Attribute Structure To Artificial Languages

Eryilmaz, K., Little, H., & De Boer, B. (2016). Using HMMs To Attribute Structure To Artificial Languages. In S. G. Roberts, C. Cuskley, L. McCrohon, L. Barceló-Coblijn, O. Feher, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 11th International Conference (EVOLANG11). Retrieved from http://evolang.org/neworleans/papers/125.html.
We investigated the use of Hidden Markov Models (HMMs) as a way of representing repertoires of continuous signals in order to infer their building blocks. We tested the idea on a dataset from an artificial language experiment. The study demonstrates using HMMs for this purpose is viable, but also that there is a lot of room for refinement such as explicit duration modeling, incorporation of autoregressive elements and relaxing the Markovian assumption, in order to accommodate specific details.
Publication type
Proceedings paper
Publication date
2016

Share this page