Rhythm and synchrony in animal movement and communication
Animal communication and motoric behavior develop over time. Often, this temporal dimension has communicative relevance and is organized according to structural patterns. In other words, time is a crucial dimension for rhythm and synchrony in animal movement and communication. Rhythm is defined as temporal structure at a second-millisecond time scale (Kotz et al. 2018). Synchrony is defined as precise co-occurrence of 2 behaviors in time (Ravignani 2017).
Rhythm, synchrony, and other forms of temporal interaction are taking center stage in animal behavior and communication. Several critical questions include, among others: what species show which rhythmic predispositions? How does a species’ sensitivity for, or proclivity towards, rhythm arise? What are the species-specific functions of rhythm and synchrony, and are there functional trends across species? How did similar or different rhythmic behaviors evolved in different species? This Special Column aims at collecting and contrasting research from different species, perceptual modalities, and empirical methods. The focus is on timing, rhythm and synchrony in the second-millisecond range.
Three main approaches are commonly adopted to study animal rhythms, with a focus on: 1) spontaneous individual rhythm production, 2) group rhythms, or 3) synchronization experiments. I concisely introduce them below (see also Kotz et al. 2018; Ravignani et al. 2018).
Rhythm, synchrony, and other forms of temporal interaction are taking center stage in animal behavior and communication. Several critical questions include, among others: what species show which rhythmic predispositions? How does a species’ sensitivity for, or proclivity towards, rhythm arise? What are the species-specific functions of rhythm and synchrony, and are there functional trends across species? How did similar or different rhythmic behaviors evolved in different species? This Special Column aims at collecting and contrasting research from different species, perceptual modalities, and empirical methods. The focus is on timing, rhythm and synchrony in the second-millisecond range.
Three main approaches are commonly adopted to study animal rhythms, with a focus on: 1) spontaneous individual rhythm production, 2) group rhythms, or 3) synchronization experiments. I concisely introduce them below (see also Kotz et al. 2018; Ravignani et al. 2018).
Share this page