A theory of relation learning and cross-domain generalization

Doumas, L. A. A., Puebla, G., Martin, A. E., & Hummel, J. E. (2022). A theory of relation learning and cross-domain generalization. Psychological Review, 129(5), 999-1041. doi:10.1037/rev0000346.
People readily generalize knowledge to novel domains and stimuli. We present a theory, instantiated in a computational model, based on the idea that cross-domain generalization in humans is a case of analogical inference over structured (i.e., symbolic) relational representations. The model is an extension of the Learning and Inference with Schemas and Analogy (LISA; Hummel & Holyoak, 1997, 2003) and Discovery of Relations by Analogy (DORA; Doumas et al., 2008) models of relational inference and learning. The resulting model learns both the content and format (i.e., structure) of relational representations from nonrelational inputs without supervision, when augmented with the capacity for reinforcement learning it leverages these representations to learn about individual domains, and then generalizes to new domains on the first exposure (i.e., zero-shot learning) via analogical inference. We demonstrate the capacity of the model to learn structured relational representations from a variety of simple visual stimuli, and to perform cross-domain generalization between video games (Breakout and Pong) and between several psychological tasks. We demonstrate that the model’s trajectory closely mirrors the trajectory of children as they learn about relations, accounting for phenomena from the literature on the development of children’s reasoning and analogy making. The model’s ability to generalize between domains demonstrates the flexibility afforded by representing domains in terms of their underlying relational structure, rather than simply in terms of the statistical relations between their inputs and outputs.
Publication type
Journal article
Publication date
2022

Share this page