AV Processing in eHumanities - a paradigm shift
Introduction
Speech research saw a dramatic change in paradigm in the 90-ies. While earlier the discussion was dominated by a phoneticians’ approach who knew about phenomena in the speech signal, the situation completely changed after stochastic machinery such as Hidden Markov Models [1] and Artificial Neural Networks [2] had been introduced. Speech processing was now dominated by a purely mathematic approach that basically ignored all existing knowledge about the speech production process and the perception mechanisms. The key was now to construct a large enough training set that would allow identifying the many free parameters of such stochastic engines. In case that the training set is representative and the annotations of the training sets are widely ‘correct’ we could assume to get a satisfyingly functioning recognizer. While the success of knowledge-based systems such as Hearsay II [3] was limited, the statistically based approach led to great improvements in recognition rates and to industrial applications.
Share this page