Training-induced neural plasticity in visual-word decoding and the role of syllables

Takashima, A., Wagensveld, B., Van Turennout, M., Zwitserlood, P., Hagoort, P., & Verhoeven, L. (2014). Training-induced neural plasticity in visual-word decoding and the role of syllables. Neuropsychologia, 61, 299-314. doi:10.1016/j.neuropsychologia.2014.06.017.
To investigate the neural underpinnings of word decoding, and how it changes as a function of repeated exposure, we trained Dutch participants repeatedly over the course of a month of training to articulate a set of novel disyllabic input strings written in Greek script to avoid the use of familiar orthographic representations. The syllables in the input were phonotactically legal combinations but non-existent in the Dutch language, allowing us to assess their role in novel word decoding. Not only trained disyllabic pseudowords were tested but also pseudowords with recombined patterns of syllables to uncover the emergence of syllabic representations. We showed that with extensive training, articulation became faster and more accurate for the trained pseudowords. On the neural level, the initial stage of decoding was reflected by increased activity in visual attention areas of occipito-temporal and occipito-parietal cortices, and in motor coordination areas of the precentral gyrus and the inferior frontal gyrus. After one month of training, memory representations for holistic information (whole word unit) were established in areas encompassing the angular gyrus, the precuneus and the middle temporal gyrus. Syllabic representations also emerged through repeated training of disyllabic pseudowords, such that reading recombined syllables of the trained pseudowords showed similar brain activation to trained pseudowords and were articulated faster than novel combinations of letter strings used in the trained pseudowords.
Publication type
Journal article
Publication date
2014

Share this page