GWAS of 126,559 individuals identifies genetic variants associated with educational attainment
Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T., Martin, N. W., Westra, H.-J., Shakhbazov, K., Abdellaoui, A., Agrawal, A., Albrecht, E., Alizadeh, B. Z., Amin, N., Barnard, J., Baumeister, S. E., Benke, K. S., Bielak, L. F., Boatman, J. A., Boyle, P. A., Davies, G. and 184 moreRietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T., Martin, N. W., Westra, H.-J., Shakhbazov, K., Abdellaoui, A., Agrawal, A., Albrecht, E., Alizadeh, B. Z., Amin, N., Barnard, J., Baumeister, S. E., Benke, K. S., Bielak, L. F., Boatman, J. A., Boyle, P. A., Davies, G., de Leeuw, C., Eklund, N., Evans, D. S., Ferhmann, R., Fischer, K., Gieger, C., Gjessing, H. K., Hägg, S., Harris, J. R., Hayward, C., Holzapfel, C., Ibrahim-Verbaas, C. A., Ingelsson, E., Jacobsson, B., Joshi, P. K., Jugessur, A., Kaakinen, M., Kanoni, S., Karjalainen, J., Kolcic, I., Kristiansson, K., Kutalik, Z., Lahti, J., Lee, S. H., Lin, P., Lind, P. A., Liu, Y., Lohman, K., Loitfelder, M., McMahon, G., Vidal, P. M., Meirelles, O., Milani, L., Myhre, R., Nuotio, M.-L., Oldmeadow, C. J., Petrovic, K. E., Peyrot, W. J., Polasek, O., Quaye, L., Reinmaa, E., Rice, J. P., Rizzi, T. S., Schmidt, H., Schmidt, R., Smith, A. V., Smith, J. A., Tanaka, T., Terracciano, A., van der Loos, M. J. H. M., Vitart, V., Völzke, H., Wellmann, J., Yu, L., Zhao, W., Allik, J., Attia, J. R., Bandinelli, S., Bastardot, F., Beauchamp, J., Bennett, D. A., Berger, K., Bierut, L. J., Boomsma, D. I., Bültmann, U., Campbell, H., Chabris, C. F., Cherkas, L., Chung, M. K., Cucca, F., de Andrade, M., De Jager, P. L., De Neve, J.-E., Deary, I. J., Dedoussis, G. V., Deloukas, P., Dimitriou, M., Eiríksdóttir, G., Elderson, M. F., Eriksson, J. G., Evans, D. M., Faul, J. D., Ferrucci, L., Garcia, M. E., Grönberg, H., Guðnason, V., Hall, P., Harris, J. M., Harris, T. B., Hastie, N. D., Heath, A. C., Hernandez, D. G., Hoffmann, W., Hofman, A., Holle, R., Holliday, E. G., Hottenga, J.-J., Iacono, W. G., Illig, T., Järvelin, M.-R., Kähönen, M., Kaprio, J., Kirkpatrick, R. M., Kowgier, M., Latvala, A., Launer, L. J., Lawlor, D. A., Lehtimäki, T., Li, J., Lichtenstein, P., Lichtner, P., Liewald, D. C., Madden, P. A., Magnusson, P. K. E., Mäkinen, T. E., Masala, M., McGue, M., Metspalu, A., Mielck, A., Miller, M. B., Montgomery, G. W., Mukherjee, S., Nyholt, D. R., Oostra, B. A., Palmer, L. J., Palotie, A., Penninx, B. W. J. H., Perola, M., Peyser, P. A., Preisig, M., Räikkönen, K., Raitakari, O. T., Realo, A., Ring, S. M., Ripatti, S., Rivadeneira, F., Rudan, I., Rustichini, A., Salomaa, V., Sarin, A.-P., Schlessinger, D., Scott, R. J., Snieder, H., St Pourcain, B., Starr, J. M., Sul, J. H., Surakka, I., Svento, R., Teumer, A., Tiemeier, H., van Rooij, F. J. A., Van Wagoner, D. R., Vartiainen, E., Viikari, J., Vollenweider, P., Vonk, J. M., Waeber, G., Weir, D. R., Wichmann, H.-E., Widen, E., Willemsen, G., Wilson, J. F., Wright, A. F., Conley, D., Davey-Smith, G., Franke, L., Groenen, P. J. F., Hofman, A., Johannesson, M., Kardia, S. L. R., Krueger, R. F., Laibson, D., Martin, N. G., Meyer, M. N., Posthuma, D., Thurik, A. R., Timpson, N. J., Uitterlinden, A. G., van Duijn, C. M., Visscher, P. M., Benjamin, D. J., Cesarini, D., Koellinger, P. D., & Study LifeLines Cohort
(2013). GWAS of 126,559 individuals identifies genetic variants associated with educational attainment.
Science, 340(6139), 1467-1471. doi:10.1126/science.1235488.
A genome-wide association study (GWAS) of educational attainment was conducted in a discovery sample of 101,069 individuals and a replication sample of 25,490. Three independent single-nucleotide polymorphisms (SNPs) are genome-wide significant (rs9320913, rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (coefficient of determination R(2) ≈ 0.02%), approximately 1 month of schooling per allele. A linear polygenic score from all measured SNPs accounts for ≈2% of the variance in both educational attainment and cognitive function. Genes in the region of the loci have previously been associated with health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the involvement of the anterior caudate nucleus. These findings provide promising candidate SNPs for follow-up work, and our effect size estimates can anchor power analyses in social-science genetics.
Publication type
Journal article
Share this page