Tracing inputs to inhibitory or excitatory neurons of mouse and cat visual cortex with a targeted rabies virus

Liu, Y.-J., Ehrengruber, M. U., Negwer, M., Shao, H.-J., Cetin, A. H., & Lyon, D. C. (2013). Tracing inputs to inhibitory or excitatory neurons of mouse and cat visual cortex with a targeted rabies virus. Current Biology, 23(18), 1746-1755. doi:10.1016/j.cub.2013.07.033.
Background Cortical inhibition plays a critical role in controlling and modulating cortical excitation and a more detailed understanding of the neuronal circuits contributing to each will provide more insight into their roles in complex cortical computations. Traditional neuronal tracers lack a means for easily distinguishing between circuits of inhibitory and excitatory neurons. To overcome this limitation, we developed a technique for retrogradely labeling inputs to local clusters of inhibitory or excitatory neurons, but not both, using neurotropic adeno-associated and lentiviral vectors, cell-type specific promoters and a modified rabies virus. Results Applied to primary visual cortex (V1) in mouse, the cell-type specific tracing technique labeled thousands of presynaptically connected neurons, and revealed that the dominant source of input to inhibitory and excitatory neurons is local in origin. Neurons in other visual areas are also labeled; the percentage of these inter-cortical inputs to excitatory neurons is somewhat higher (~20%) than to inhibitory neurons (<10%), suggesting that inter-cortical connections have less direct control over inhibition. The inputs to inhibitory neurons were also traced in cat V1, and when aligned with the orientation preference map, revealed for the first time that long-range inputs to inhibitory neurons are well tuned to orientation. Conclusions These novel findings for inhibitory and excitatory circuits in the visual cortex demonstrate the efficacy of our new technique and its ability to work across species, including larger-brained mammals such as the cat. This paves the way for better understanding the roles of specific cell-types in higher-order perceptual and cognitive processes.
Publication type
Journal article
Publication date
2013

Share this page