A case study of closed-domain response suggestion with limited training data

Galke, L., Gerstenkorn, G., & Scherp, A. (2018). A case study of closed-domain response suggestion with limited training data. In M. Elloumi, M. Granitzer, A. Hameurlain, C. Seifert, B. Stein, A. Min Tjoa, & R. Wagner (Eds.), Database and Expert Systems Applications: DEXA 2018 International Workshops, BDMICS, BIOKDD, and TIR, Regensburg, Germany, September 3–6, 2018, Proceedings (pp. 218-229). Cham, Switzerland: Springer.
We analyze the problem of response suggestion in a closed domain along a real-world scenario of a digital library. We present a text-processing pipeline to generate question-answer pairs from chat transcripts. On this limited amount of training data, we compare retrieval-based, conditioned-generation, and dedicated representation learning approaches for response suggestion. Our results show that retrieval-based methods that strive to find similar, known contexts are preferable over parametric approaches from the conditioned-generation family, when the training data is limited. We, however, identify a specific representation learning approach that is competitive to the retrieval-based approaches despite the training data limitation.
Publication type
Proceedings paper
Publication date
2018

Share this page