How variability shapes learning and generalization

Raviv, L., Lupyan, G., & Green, S. C. (2022). How variability shapes learning and generalization. Trends in Cognitive Sciences, 26(6), 462-483. doi:10.1016/j.tics.2022.03.007.
Learning is using past experiences to inform new behaviors and actions. Because all experiences are unique, learning always requires some generalization. An effective way of improving generalization is to expose learners to more variable (and thus often more representative) input. More variability tends to make initial learning more challenging, but eventually leads to more general and robust performance. This core principle has been repeatedly rediscovered and renamed in different domains (e.g., contextual diversity, desirable difficulties, variability of practice). Reviewing this basic result as it has been formulated in different domains allows us to identify key patterns, distinguish between different kinds of variability, discuss the roles of varying task-relevant versus irrelevant dimensions, and examine the effects of introducing variability at different points in training.
Publication type
Journal article
Publication date
2022

Share this page