Structural Variability Across the Primate Brain: A Cross-Species Comparison
A large amount of variability exists across human brains; revealed initially on a small scale by postmortem studies and,
more recently, on a larger scale with the advent of neuroimaging. Here we compared structural variability between human
and macaque monkey brains using grey and white matter magnetic resonance imaging measures. The monkey brain was
overall structurally as variable as the human brain, but variability had a distinct distribution pattern, with some key areas
showing high variability. We also report the first evidence of a relationship between anatomical variability and evolutionary
expansion in the primate brain. This suggests a relationship between variability and stability, where areas of low variability
may have evolved less recently and have more stability, while areas of high variability may have evolved more recently and
be less similar across individuals. We showed specific differences between the species in key areas, including the amount of
hemispheric asymmetry in variability, which was left-lateralized in the human brain across several phylogenetically recent
regions. This suggests that cerebral variability may be another useful measure for comparison between species and may add
another dimension to our understanding of evolutionary mechanisms.
more recently, on a larger scale with the advent of neuroimaging. Here we compared structural variability between human
and macaque monkey brains using grey and white matter magnetic resonance imaging measures. The monkey brain was
overall structurally as variable as the human brain, but variability had a distinct distribution pattern, with some key areas
showing high variability. We also report the first evidence of a relationship between anatomical variability and evolutionary
expansion in the primate brain. This suggests a relationship between variability and stability, where areas of low variability
may have evolved less recently and have more stability, while areas of high variability may have evolved more recently and
be less similar across individuals. We showed specific differences between the species in key areas, including the amount of
hemispheric asymmetry in variability, which was left-lateralized in the human brain across several phylogenetically recent
regions. This suggests that cerebral variability may be another useful measure for comparison between species and may add
another dimension to our understanding of evolutionary mechanisms.
Additional information
supplementary file
supplementary table 1
supplementary table 2
supplementary figure 1
supplementary figure 2
Share this page