Dissection of molecular mechanisms underlying speech and language disorders
Developmental disorders affecting speech and language are highly heritable, but very little is currently understood about the neuromolecular mechanisms that underlie these traits. Integration of data from diverse research areas, including linguistics, neuropsychology, neuroimaging, genetics, molecular neuroscience, developmental biology, and evolutionary anthropology, is becoming essential for unraveling the relevant pathways. Recent studies of the FOXP2 gene provide a case in point. Mutation of FOXP2 causes a rare form of speech and language disorder, and the gene appears to be a crucial regulator of embryonic development for several tissues. Molecular investigations of the central nervous system indicate that the gene may be involved in establishing and maintaining connectivity of corticostriatal and olivocerebellar circuits in mammals. Notably, it has been shown that FOXP2 was subject to positive selection in recent human evolution. Consideration of findings from multiple levels of analysis demonstrates that FOXP2 cannot be characterized as “the gene for speech,” but rather as one critical piece of a complex puzzle. This story gives a flavor of what is to come in this field and indicates that anyone expecting simple explanations of etiology or evolution should be prepared for some intriguing surprises.
Share this page