Displaying 1 - 4 of 4
-
Bakker, I., Takashima, A., van Hell, J. G., Janzen, G., & McQueen, J. M. (2014). Competition from unseen or unheard novel words: Lexical consolidation across modalities. Journal of Memory and Language, 73, 116-139. doi:10.1016/j.jml.2014.03.002.
Abstract
In four experiments we investigated the formation of novel word memories across modalities, using competition between novel words and their existing phonological/orthographic neighbours as a test of lexical integration. Auditorily acquired novel words entered into competition both in the spoken modality (Experiment 1) and in the written modality (Experiment 4) after a consolidation period of 24 h. Words acquired from print, on the other hand, showed competition effects after 24 h in a visual word recognition task (Experiment 3) but required additional training and a consolidation period of a week before entering into spoken-word competition (Experiment 2). These cross-modal effects support the hypothesis that lexicalised rather than episodic representations underlie post-consolidation competition effects. We suggest that sublexical phoneme–grapheme conversion during novel word encoding and/or offline consolidation enables the formation of modality-specific lexemes in the untrained modality, which subsequently undergo the same cortical integration process as explicitly perceived word forms in the trained modality. Although conversion takes place in both directions, speech input showed an advantage over print both in terms of lexicalisation and explicit memory performance. In conclusion, the brain is able to integrate and consolidate internally generated lexical information as well as external perceptual input. -
Takashima, A., Wagensveld, B., Van Turennout, M., Zwitserlood, P., Hagoort, P., & Verhoeven, L. (2014). Training-induced neural plasticity in visual-word decoding and the role of syllables. Neuropsychologia, 61, 299-314. doi:10.1016/j.neuropsychologia.2014.06.017.
Abstract
To investigate the neural underpinnings of word decoding, and how it changes as a function of repeated exposure, we trained Dutch participants repeatedly over the course of a month of training to articulate a set of novel disyllabic input strings written in Greek script to avoid the use of familiar orthographic representations. The syllables in the input were phonotactically legal combinations but non-existent in the Dutch language, allowing us to assess their role in novel word decoding. Not only trained disyllabic pseudowords were tested but also pseudowords with recombined patterns of syllables to uncover the emergence of syllabic representations. We showed that with extensive training, articulation became faster and more accurate for the trained pseudowords. On the neural level, the initial stage of decoding was reflected by increased activity in visual attention areas of occipito-temporal and occipito-parietal cortices, and in motor coordination areas of the precentral gyrus and the inferior frontal gyrus. After one month of training, memory representations for holistic information (whole word unit) were established in areas encompassing the angular gyrus, the precuneus and the middle temporal gyrus. Syllabic representations also emerged through repeated training of disyllabic pseudowords, such that reading recombined syllables of the trained pseudowords showed similar brain activation to trained pseudowords and were articulated faster than novel combinations of letter strings used in the trained pseudowords. -
Takashima, A., Bakker, I., Van Hell, J. G., Janzen, G., & McQueen, J. M. (2014). Richness of information about novel words influences how episodic and semantic memory networks interact during lexicalization. NeuroImage, 84, 265-278. doi:10.1016/j.neuroimage.2013.08.023.
Abstract
The complementary learning systems account of declarative memory suggests two distinct memory networks, a fast-mapping, episodic system involving the hippocampus, and a slower semantic memory system distributed across the neocortex in which new information is gradually integrated with existing representations. In this study, we investigated the extent to which these two networks are involved in the integration of novel words into the lexicon after extensive learning, and how the involvement of these networks changes after 24 hours. In particular, we explored whether having richer information at encoding influences the lexicalization trajectory. We trained participants with two sets of novel words, one where exposure was only to the words’ phonological forms (the form-only condition), and one where pictures of unfamiliar objects were associated with the words’ phonological forms (the picture-associated condition). A behavioral measure of lexical competition (indexing lexicalization) indicated stronger competition effects for the form-only words. Imaging (fMRI) results revealed greater involvement of phonological lexical processing areas immediately after training in the form-only condition, suggesting tight connections were formed between novel words and existing lexical entries already at encoding. Retrieval of picture-associated novel words involved the episodic/hippocampal memory system more extensively. Although lexicalization was weaker in the picture-associated condition, overall memory strength was greater when tested after a 24 hours’ delay, probably due to the availability of both episodic and lexical memory networks to aid retrieval. It appears that, during lexicalization of a novel word, the relative involvement of different memory networks differs according to the richness of the information about that word available at encoding. -
Takashima, A., Petersson, K. M., Rutters, F., Tendolkar, I., Jensen, O., Zwarts, M. J., McNaughton, B. L., & Fernández, G. (2006). Declarative memory consolidation in humans: A prospective functional magnetic resonance imaging study. Proceedings of the National Academy of Sciences of the United States of America [PNAS], 103(3), 756-761.
Abstract
Retrieval of recently acquired declarative memories depends on
the hippocampus, but with time, retrieval is increasingly sustainable
by neocortical representations alone. This process has been
conceptualized as system-level consolidation. Using functional
magnetic resonance imaging, we assessed over the course of three
months how consolidation affects the neural correlates of memory
retrieval. The duration of slow-wave sleep during a nap/rest
period after the initial study session and before the first scan
session on day 1 correlated positively with recognition memory
performance for items studied before the nap and negatively with
hippocampal activity associated with correct confident recognition.
Over the course of the entire study, hippocampal activity for
correct confident recognition continued to decrease, whereas activity
in a ventral medial prefrontal region increased. These findings,
together with data obtained in rodents, may prompt a
revision of classical consolidation theory, incorporating a transfer
of putative linking nodes from hippocampal to prelimbic prefrontal
areas.
Share this page