Displaying 1 - 65 of 65
-
Alagöz, G., Molz, B., Eising, E., Schijven, D., Francks, C., Jason L., S., & Fisher, S. E. (2022). Using neuroimaging genomics to investigate the evolution of human brain structure. Proceedings of the National Academy of Sciences of the United States of America, 119(40): e2200638119. doi:10.1073/pnas.2200638119.
Abstract
Alterations in brain size and organization represent some of the most distinctive changes in the emergence of our species. Yet, there is limited understanding of how genetic factors contributed to altered neuroanatomy during human evolution. Here, we analyze neuroimaging and genetic data from up to 30,000 people in the UK Biobank and integrate with genomic annotations for different aspects of human evolution, including those based on ancient DNA and comparative genomics. We show that previously reported signals of recent polygenic selection for cortical anatomy are not replicable in a more ancestrally homogeneous sample. We then investigate relationships between evolutionary annotations and common genetic variants shaping cortical surface area and white-matter connectivity for each hemisphere. Our analyses identify single-nucleotide polymorphism heritability enrichment in human-gained regulatory elements that are active in early brain development, affecting surface areas of several parts of the cortex, including left-hemispheric speech-associated regions. We also detect heritability depletion in genomic regions with Neanderthal ancestry for connectivity of the uncinate fasciculus; this is a white-matter tract involved in memory, language, and socioemotional processing with relevance to neuropsychiatric disorders. Finally, we show that common genetic loci associated with left-hemispheric pars triangularis surface area overlap with a human-gained enhancer and affect regulation of ZIC4, a gene implicated in neurogenesis. This work demonstrates how genomic investigations of present-day neuroanatomical variation can help shed light on the complexities of our evolutionary past.Additional information
supplementary information -
Bast, B. J., Oonk, L. C., De Nil, L., Eising, E., Koenraads, S. P., Bouwen, J., & Franken, M.-C. (2022). Ontwikkeling van stotteren: Inleiding tot een praktijkmodel. Stem- Spraak- en Taalpathologie, 27, 1-7. doi:10.21827/32.8310/2022-1.
Abstract
Dit artikel is de inleiding op het direct hierna volgende (Oonk e.a. 2022) waar een nieuw praktijkmodel over het ontstaan en ontwikkeling van stotteren wordt voorgesteld.
In de dagelijkse praktijk van vooral Nederlandstalige logopedisten (-stottertherapeuten) is tot nu toe veel gebruik gemaakt van het klinische werkmodel van Bertens (1994; 2017). Dit model gaat uit van een primaire neuromusculaire timingsstoornis, welke zich niet alleen uit in het spreken, maar ook in algemene zin aanwezig is. Dit model echter, is aan revisie toe. Volgens de recente literatuur is de algemene aard van die timingstoornis niet bewezen, en zijn er veel vroegere (meer primaire) factoren aantoonbaar van belang bij het ontstaan van stotteren, met name in de genetica en in de neurologie. In dit artikel wordt deze literatuur kort samengevat, alsmede worden enkele recente modellen omschreven. Met name regulatie en terugkoppeling krijgen in recente modellen meer aandacht. Er is geen volledigheid nagestreefd, maar dit artikel is meer een tutoriale opmaat voor het hierna te presenteren model.
(This article serves as an introduction to the accompanying paper, in which a new clinical
model of the origin and development of stuttering is presented (Oonk e.a., 2022).
In their clinical practice, Dutch speech language pathologists still tend to use the
clinical model proposed by Bertens (1994; 2017). This model explains stuttering as de-
veloping from a primary neuromuscular timing deficit, which manifests itself not only
in speech, but in more general behaviour as well. In our opinion, this model needs to be
updated and revised based on current scientific and clinical knowledge. There is littleevidence for the general timing deficit in Bertens’ model and, moreover, several more
fundamental factors, especially those related to genetics and neural processes, that have
an important role in the onset of stuttering have been reported. This paper provides a
review and summary of these recent data, and several newer models are described. An
important aspect of these models is the importance given to processes of regulation
and feedback. An exhaustive overview of the existing literature has not been strived for
but it is hoped that this paper will serve as a useful introduction to the clinical model
presented in the accompanying paper.)
-
Bignardi, G., Chamberlain, R., Kevenaar, S. T., Tamimy, Z., & Boomsma, D. I. (2022). On the etiology of aesthetic chills: A behavioral genetic study. Scientific Reports, 12: 3247. doi:10.1038/s41598-022-07161-z.
Abstract
Aesthetic chills, broadly defined as a somatic marker of peak emotional-hedonic responses, are experienced by individuals across a variety of human cultures. Yet individuals vary widely in the propensity of feeling them. These individual differences have been studied in relation to demographics, personality, and neurobiological and physiological factors, but no study to date has explored the genetic etiological sources of variation. To partition genetic and environmental sources of variation in the propensity of feeling aesthetic chills, we fitted a biometrical genetic model to data from 14127 twins (from 8995 pairs), collected by the Netherlands Twin Register. Both genetic and unique environmental factors accounted for variance in aesthetic chills, with heritability estimated at .36 ([.33, .39] 95% CI). We found females more prone than males to report feeling aesthetic chills. However, a test for genotype x sex interaction did not show evidence that heritability differs between sexes. We thus show that the propensity of feeling aesthetic chills is not shaped by nurture alone, but it also reflects underlying genetic propensities.Competing Interest StatementThe authors have declared no competing interest.Additional information
Link to Preprint on BioRxiv -
De Boer, E., Ockeloen, C. W., Kampen, R. A., Hampstead, J. E., Dingemans, A. J. M., Rots, D., Lütje, L., Ashraf, T., Baker, R., Barat-Houari, M., Angle, B., Chatron, N., Denommé-Pichon, A.-S., Devinsky, O., Dubourg, C., Elmslie, F., Elloumi, H. Z., Faivre, L., Fitzgerald-Butt, S., Geneviève, D. and 30 moreDe Boer, E., Ockeloen, C. W., Kampen, R. A., Hampstead, J. E., Dingemans, A. J. M., Rots, D., Lütje, L., Ashraf, T., Baker, R., Barat-Houari, M., Angle, B., Chatron, N., Denommé-Pichon, A.-S., Devinsky, O., Dubourg, C., Elmslie, F., Elloumi, H. Z., Faivre, L., Fitzgerald-Butt, S., Geneviève, D., Goos, J. A. C., Helm, B. M., Kini, U., Lasa-Aranzasti, A., Lesca, G., Lynch, S. A., Mathijssen, I. M. J., McGowan, R., Monaghan, K. G., Odent, S., Pfundt, R., Putoux, A., Van Reeuwijk, J., Santen, G. W. E., Sasaki, E., Sorlin, A., Van der Spek, P. J., Stegmann, A. P. A., Swagemakers, S. M. A., Valenzuela, I., Viora-Dupont, E., Vitobello, A., Ware, S. M., Wéber, M., Gilissen, C., Low, K. J., Fisher, S. E., Vissers, L. E. L. M., Wong, M. M. K., & Kleefstra, T. (2022). Missense variants in ANKRD11 cause KBG syndrome by impairment of stability or transcriptional activity of the encoded protein. Genetics in Medicine, 24(10), 2051-2064. doi:10.1016/j.gim.2022.06.007.
Abstract
Purpose
Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants.
Methods
We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments.
Results
We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity.
Conclusion
Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping. -
Boyce, J. O., Jackson, V. E., Van Reyk, O., Parker, R., Vogel, A. P., Eising, E., Horton, S. E., Gillespie, N. A., Scheffer, I. E., Amor, D. J., Hildebrand, M. S., Fisher, S. E., Martin, N. G., Reilly, S., Bahlo, M., & Morgan, A. T. (2022). Self-reported impact of developmental stuttering across the lifespan. Developmental Medicine & Child Neurology, 64(10), 1297-1306. doi:10.1111/dmcn.15211.
Abstract
Aim
To examine the phenomenology of stuttering across the lifespan in the largest prospective cohort to date.
Method
Participants aged 7 years and older with a history of developmental stuttering were recruited. Self-reported phenotypic data were collected online including stuttering symptomatology, co-occurring phenotypes, genetic predisposition, factors associated with stuttering severity, and impact on anxiety, education, and employment.
Results
A total of 987 participants (852 adults: 590 males, 262 females, mean age 49 years [SD = 17 years 10 months; range = 18–93 years] and 135 children: 97 males, 38 females, mean age 11 years 4 months [SD = 3 years; range = 7–17 years]) were recruited. Stuttering onset occurred at age 3 to 6 years in 64.0%. Blocking (73.2%) was the most frequent phenotype; 75.9% had sought stuttering therapy and 15.5% identified as having recovered. Half (49.9%) reported a family history. There was a significant negative correlation with age for both stuttering frequency and severity in adults. Most were anxious due to stuttering (90.4%) and perceived stuttering as a barrier to education and employment outcomes (80.7%).
Interpretation
The frequent persistence of stuttering and the high proportion with a family history suggest that stuttering is a complex trait that does not often resolve, even with therapy. These data provide new insights into the phenotype and prognosis of stuttering, information that is critically needed to encourage the development of more effective speech therapies.
-
Brouwer, R. M., Klein, M., Grasby, K. L., Schnack, H. G., Jahanshad, N., Teeuw, J., Thomopoulos, S. I., Sprooten, E., Franz, C. E., Gogtay, N., Kremen, W. S., Panizzon, M. S., Olde Loohuis, L. M., Whelan, C. D., Aghajani, M., Alloza, C., Alnæs, D., Artiges, E., Ayesa-Arriola, R., Barker, G. J. and 180 moreBrouwer, R. M., Klein, M., Grasby, K. L., Schnack, H. G., Jahanshad, N., Teeuw, J., Thomopoulos, S. I., Sprooten, E., Franz, C. E., Gogtay, N., Kremen, W. S., Panizzon, M. S., Olde Loohuis, L. M., Whelan, C. D., Aghajani, M., Alloza, C., Alnæs, D., Artiges, E., Ayesa-Arriola, R., Barker, G. J., Bastin, M. E., Blok, E., Bøen, E., Breukelaar, I. A., Bright, J. K., Buimer, E. E. L., Bülow, R., Cannon, D. M., Ciufolini, S., Crossley, N. A., Damatac, C. G., Dazzan, P., De Mol, C. L., De Zwarte, S. M. C., Desrivières, S., Díaz-Caneja, C. M., Doan, N. T., Dohm, K., Fröhner, J. H., Goltermann, J., Grigis, A., Grotegerd, D., Han, L. K. M., Harris, M. A., Hartman, C. A., Heany, S. J., Heindel, W., Heslenfeld, D. J., Hohmann, S., Ittermann, B., Jansen, P. R., Janssen, J., Jia, T., Jiang, J., Jockwitz, C., Karali, T., Keeser, D., Koevoets, M. G. J. C., Lenroot, R. K., Malchow, B., Mandl, R. C. W., Medel, V., Meinert, S., Morgan, C. A., Mühleisen, T. W., Nabulsi, L., Opel, N., Ortiz-García de la Foz, V., Overs, B. J., Paillère Martinot, M.-L., Redlich, R., Marques, T. R., Repple, J., Roberts, G., Roshchupkin, G. V., Setiaman, N., Shumskaya, E., Stein, F., Sudre, G., Takahashi, S., Thalamuthu, A., Tordesillas-Gutiérrez, D., Van der Lugt, A., Van Haren, N. E. M., Wardlaw, J. M., Wen, W., Westeneng, H.-J., Wittfeld, K., Zhu, A. H., Zugman, A., Armstrong, N. J., Bonfiglio, G., Bralten, J., Dalvie, S., Davies, G., Di Forti, M., Ding, L., Donohoe, G., Forstner, A. J., Gonzalez-Peñas, J., Guimaraes, J. P. O. F. T., Homuth, G., Hottenga, J.-J., Knol, M. J., Kwok, J. B. J., Le Hellard, S., Mather, K. A., Milaneschi, Y., Morris, D. W., Nöthen, M. M., Papiol, S., Rietschel, M., Santoro, M. L., Steen, V. M., Stein, J. L., Streit, F., Tankard, R. M., Teumer, A., Van 't Ent, D., Van der Meer, D., Van Eijk, K. R., Vassos, E., Vázquez-Bourgon, J., Witt, S. H., the IMAGEN Consortium, Adams, H. H. H., Agartz, I., Ames, D., Amunts, K., Andreassen, O. A., Arango, C., Banaschewski, T., Baune, B. T., Belangero, S. I., Bokde, A. L. W., Boomsma, D. I., Bressan, R. A., Brodaty, H., Buitelaar, J. K., Cahn, W., Caspers, S., Cichon, S., Crespo Facorro, B., Cox, S. R., Dannlowski, U., Elvsåshagen, T., Espeseth, T., Falkai, P. G., Fisher, S. E., Flor, H., Fullerton, J. M., Garavan, H., Gowland, P. A., Grabe, H. J., Hahn, T., Heinz, A., Hillegers, M., Hoare, J., Hoekstra, P. J., Ikram, M. A., Jackowski, A. P., Jansen, A., Jönsson, E. G., Kahn, R. S., Kircher, T., Korgaonkar, M. S., Krug, A., Lemaitre, H., Malt, U. F., Martinot, J.-L., McDonald, C., Mitchell, P. B., Muetzel, R. L., Murray, R. M., Nees, F., Nenadic, I., Oosterlaan, J., Ophoff, R. A., Pan, P. M., Penninx, B. W. J. H., Poustka, L., Sachdev, P. S., Salum, G. A., Schofield, P. R., Schumann, G., Shaw, P., Sim, K., Smolka, M. N., Stein, D. J., Trollor, J., Van den Berg, L. H., Veldink, J. H., Walter, H., Westlye, L. T., Whelan, R., White, T., Wright, M. J., Medland, S. E., Franke, B., Thompson, P. M., & Hulshoff Pol, H. E. (2022). Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nature Neuroscience, 25, 421-432. doi:10.1038/s41593-022-01042-4.
Abstract
Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.Additional information
supplementary information and supplementary figs. 1–10 supplementary tables 1–19 supplementary video -
Cambier, N., Miletitch, R., Burraco, A. B., & Raviv, L. (2022). Prosociality in swarm robotics: A model to study self-domestication and language evolution. In A. Ravignani, R. Asano, D. Valente, F. Ferretti, S. Hartmann, M. Hayashi, Y. Jadoul, M. Martins, Y. Oseki, E. D. Rodrigues, O. Vasileva, & S. Wacewicz (
Eds. ), The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE) (pp. 98-100). Nijmegen: Joint Conference on Language Evolution (JCoLE). -
Cheung, C.-Y., Yakpo, K., & Coupé, C. (2022). A computational simulation of the genesis and spread of lexical items in situations of abrupt language contact. In A. Ravignani, R. Asano, D. Valente, F. Ferretti, S. Hartmann, M. Hayashi, Y. Jadoul, M. Martins, Y. Oseki, E. D. Rodrigues, O. Vasileva, & S. Wacewicz (
Eds. ), The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE) (pp. 115-122). Nijmegen: Joint Conference on Language Evolution (JCoLE).Abstract
The current study presents an agent-based model which simulates the innovation and
competition among lexical items in cases of language contact. It is inspired by relatively
recent historical cases in which the linguistic ecology and sociohistorical context are highly complex. Pidgin and creole genesis offers an opportunity to obtain linguistic facts, social dynamics, and historical demography in a highly segregated society. This provides a solid ground for researching the interaction of populations with different pre-existing language systems, and how different factors contribute to the genesis of the lexicon of a newly generated mixed language. We take into consideration the population dynamics and structures, as well as a distribution of word frequencies related to language use, in order to study how social factors may affect the developmental trajectory of languages. Focusing on the case of Sranan in Suriname, our study shows that it is possible to account for the
composition of its core lexicon in relation to different social groups, contact patterns, and
large population movements. -
Chormai, P., Pu, Y., Hu, H., Fisher, S. E., Francks, C., & Kong, X. (2022). Machine learning of large-scale multimodal brain imaging data reveals neural correlates of hand preference. NeuroImage, 262: 119534. doi:10.1016/j.neuroimage.2022.119534.
Abstract
Lateralization is a fundamental characteristic of many behaviors and the organization of the brain, and atypical lateralization has been suggested to be linked to various brain-related disorders such as autism and schizophrenia. Right-handedness is one of the most prominent markers of human behavioural lateralization, yet its neurobiological basis remains to be determined. Here, we present a large-scale analysis of handedness, as measured by self-reported direction of hand preference, and its variability related to brain structural and functional organization in the UK Biobank (N = 36,024). A multivariate machine learning approach with multi-modalities of brain imaging data was adopted, to reveal how well brain imaging features could predict individual's handedness (i.e., right-handedness vs. non-right-handedness) and further identify the top brain signatures that contributed to the prediction. Overall, the results showed a good prediction performance, with an area under the receiver operating characteristic curve (AUROC) score of up to 0.72, driven largely by resting-state functional measures. Virtual lesion analysis and large-scale decoding analysis suggested that the brain networks with the highest importance in the prediction showed functional relevance to hand movement and several higher-level cognitive functions including language, arithmetic, and social interaction. Genetic analyses of contributions of common DNA polymorphisms to the imaging-derived handedness prediction score showed a significant heritability (h2=7.55%, p <0.001) that was similar to and slightly higher than that for the behavioural measure itself (h2=6.74%, p <0.001). The genetic correlation between the two was high (rg=0.71), suggesting that the imaging-derived score could be used as a surrogate in genetic studies where the behavioural measure is not available. This large-scale study using multimodal brain imaging and multivariate machine learning has shed new light on the neural correlates of human handedness.Additional information
supplementary material -
Den Hoed, J. (2022). Disentangling the molecular landscape of genetic variation of neurodevelopmental and speech disorders. PhD Thesis, Radboud University Nijmegen, Nijmegen.
Additional information
full text via Radboud Repository -
Dima, D., Modabbernia, A., Papachristou, E., Doucet, G. E., Agartz, I., Aghajani, M., Akudjedu, T. N., Albajes‐Eizagirre, A., Alnæs, D., Alpert, K. I., Andersson, M., Andreasen, N. C., Andreassen, O. A., Asherson, P., Banaschewski, T., Bargallo, N., Baumeister, S., Baur‐Streubel, R., Bertolino, A., Bonvino, A. and 182 moreDima, D., Modabbernia, A., Papachristou, E., Doucet, G. E., Agartz, I., Aghajani, M., Akudjedu, T. N., Albajes‐Eizagirre, A., Alnæs, D., Alpert, K. I., Andersson, M., Andreasen, N. C., Andreassen, O. A., Asherson, P., Banaschewski, T., Bargallo, N., Baumeister, S., Baur‐Streubel, R., Bertolino, A., Bonvino, A., Boomsma, D. I., Borgwardt, S., Bourque, J., Brandeis, D., Breier, A., Brodaty, H., Brouwer, R. M., Buitelaar, J. K., Busatto, G. F., Buckner, R. L., Calhoun, V., Canales‐Rodríguez, E. J., Cannon, D. M., Caseras, X., Castellanos, F. X., Cervenka, S., Chaim‐Avancini, T. M., Ching, C. R. K., Chubar, V., Clark, V. P., Conrod, P., Conzelmann, A., Crespo‐Facorro, B., Crivello, F., Crone, E. A., Dale, A. M., Davey, C., De Geus, E. J. C., De Haan, L., De Zubicaray, G. I., Den Braber, A., Dickie, E. W., Di Giorgio, A., Doan, N. T., Dørum, E. S., Ehrlich, S., Erk, S., Espeseth, T., Fatouros‐Bergman, H., Fisher, S. E., Fouche, J., Franke, B., Frodl, T., Fuentes‐Claramonte, P., Glahn, D. C., Gotlib, I. H., Grabe, H., Grimm, O., Groenewold, N. A., Grotegerd, D., Gruber, O., Gruner, P., Gur, R. E., Gur, R. C., Harrison, B. J., Hartman, C. A., Hatton, S. N., Heinz, A., Heslenfeld, D. J., Hibar, D. P., Hickie, I. B., Ho, B., Hoekstra, P. J., Hohmann, S., Holmes, A. J., Hoogman, M., Hosten, N., Howells, F. M., Hulshoff Pol, H. E., Huyser, C., Jahanshad, N., James, A., Jernigan, T. L., Jiang, J., Jönsson, E. G., Joska, J. A., Kahn, R., Kalnin, A., Kanai, R., Klein, M., Klyushnik, T. P., Koenders, L., Koops, S., Krämer, B., Kuntsi, J., Lagopoulos, J., Lázaro, L., Lebedeva, I., Lee, W. H., Lesch, K., Lochner, C., Machielsen, M. W. J., Maingault, S., Martin, N. G., Martínez‐Zalacaín, I., Mataix‐Cols, D., Mazoyer, B., McDonald, C., McDonald, B. C., McIntosh, A. M., McMahon, K. L., McPhilemy, G., Menchón, J. M., Medland, S. E., Meyer‐Lindenberg, A., Naaijen, J., Najt, P., Nakao, T., Nordvik, J. E., Nyberg, L., Oosterlaan, J., Ortiz‐García de la Foz, V., Paloyelis, Y., Pauli, P., Pergola, G., Pomarol‐Clotet, E., Portella, M. J., Potkin, S. G., Radua, J., Reif, A., Rinker, D. A., Roffman, J. L., Rosa, P. G. P., Sacchet, M. D., Sachdev, P. S., Salvador, R., Sánchez‐Juan, P., Sarró, S., Satterthwaite, T. D., Saykin, A. J., Serpa, M. H., Schmaal, L., Schnell, K., Schumann, G., Sim, K., Smoller, J. W., Sommer, I., Soriano‐Mas, C., Stein, D. J., Strike, L. T., Swagerman, S. C., Tamnes, C. K., Temmingh, H. S., Thomopoulos, S. I., Tomyshev, A. S., Tordesillas‐Gutiérrez, D., Trollor, J. N., Turner, J. A., Uhlmann, A., Van den Heuvel, O. A., Van den Meer, D., Van der Wee, N. J. A., Van Haren, N. E. M., Van't Ent, D., Van Erp, T. G. M., Veer, I. M., Veltman, D. J., Voineskos, A., Völzke, H., Walter, H., Walton, E., Wang, L., Wang, Y., Wassink, T. H., Weber, B., Wen, W., West, J. D., Westlye, L. T., Whalley, H., Wierenga, L. M., Williams, S. C. R., Wittfeld, K., Wolf, D. H., Worker, A., Wright, M. J., Yang, K., Yoncheva, Y., Zanetti, M. V., Ziegler, G. C., Thompson, P. M., Frangou, S., & Karolinska Schizophrenia Project (KaSP) (2022). Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years. Human Brain Mapping, 43(1), 452-469. doi:10.1002/hbm.25320.
Abstract
Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Consortium to examine age‐related trajectories inferred from cross‐sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3–90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter‐individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age‐related morphometric patterns. -
Doust, C., Fontanillas, P., Eising, E., Gordon, S. D., Wang, Z., Alagöz, G., Molz, B., 23andMe Research Team, Quantitative Trait Working Group of the GenLang Consortium, St Pourcain, B., Francks, C., Marioni, R. E., Zhao, J., Paracchini, S., Talcott, J. B., Monaco, A. P., Stein, J. F., Gruen, J. R., Olson, R. K., Willcutt, E. G., DeFries, J. C., Pennington, B. F. and 7 moreDoust, C., Fontanillas, P., Eising, E., Gordon, S. D., Wang, Z., Alagöz, G., Molz, B., 23andMe Research Team, Quantitative Trait Working Group of the GenLang Consortium, St Pourcain, B., Francks, C., Marioni, R. E., Zhao, J., Paracchini, S., Talcott, J. B., Monaco, A. P., Stein, J. F., Gruen, J. R., Olson, R. K., Willcutt, E. G., DeFries, J. C., Pennington, B. F., Smith, S. D., Wright, M. J., Martin, N. G., Auton, A., Bates, T. C., Fisher, S. E., & Luciano, M. (2022). Discovery of 42 genome-wide significant loci associated with dyslexia. Nature Genetics. doi:10.1038/s41588-022-01192-y.
Abstract
Reading and writing are crucial life skills but roughly one in ten children are affected by dyslexia, which can persist into adulthood. Family studies of dyslexia suggest heritability up to 70%, yet few convincing genetic markers have been found. Here we performed a genome-wide association study of 51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls and identified 42 independent genome-wide significant loci: 15 in genes linked to cognitive ability/educational attainment, and 27 new and potentially more specific to dyslexia. We validated 23 loci (13 new) in independent cohorts of Chinese and European ancestry. Genetic etiology of dyslexia was similar between sexes, and genetic covariance with many traits was found, including ambidexterity, but not neuroanatomical measures of language-related circuitry. Dyslexia polygenic scores explained up to 6% of variance in reading traits, and might in future contribute to earlier identification and remediation of dyslexia. -
Eising, E., Mirza-Schreiber, N., De Zeeuw, E. L., Wang, C. A., Truong, D. T., Allegrini, A. G., Shapland, C. Y., Zhu, G., Wigg, K. G., Gerritse, M., Molz, B., Alagöz, G., Gialluisi, A., Abbondanza, F., Rimfeld, K., Van Donkelaar, M. M. J., Liao, Z., Jansen, P. R., Andlauer, T. F. M., Bates, T. C. and 70 moreEising, E., Mirza-Schreiber, N., De Zeeuw, E. L., Wang, C. A., Truong, D. T., Allegrini, A. G., Shapland, C. Y., Zhu, G., Wigg, K. G., Gerritse, M., Molz, B., Alagöz, G., Gialluisi, A., Abbondanza, F., Rimfeld, K., Van Donkelaar, M. M. J., Liao, Z., Jansen, P. R., Andlauer, T. F. M., Bates, T. C., Bernard, M., Blokland, K., Børglum, A. D., Bourgeron, T., Brandeis, D., Ceroni, F., Dale, P. S., Landerl, K., Lyytinen, H., De Jong, P. F., DeFries, J. C., Demontis, D., Feng, Y., Gordon, S. D., Guger, S. L., Hayiou-Thomas, M. E., Hernández-Cabrera, J. A., Hottenga, J.-J., Hulme, C., Kerr, E. N., Koomar, T., Lovett, M. W., Martin, N. G., Martinelli, A., Maurer, U., Michaelson, J. J., Moll, K., Monaco, A. P., Morgan, A. T., Nöthen, M. M., Pausova, Z., Pennell, C. E., Pennington, B. F., Price, K. M., Rajagopal, V. M., Ramus, F., Richer, L., Simpson, N. H., Smith, S., Snowling, M. J., Stein, J., Strug, L. J., Talcott, J. B., Tiemeier, H., Van de Schroeff, M. M. P., Verhoef, E., Watkins, K. E., Wilkinson, M., Wright, M. J., Barr, C. L., Boomsma, D. I., Carreiras, M., Franken, M.-C.-J., Gruen, J. R., Luciano, M., Müller-Myhsok, B., Newbury, D. F., Olson, R. K., Paracchini, S., Paus, T., Plomin, R., Schulte-Körne, G., Reilly, S., Tomblin, J. B., Van Bergen, E., Whitehouse, A. J., Willcutt, E. G., St Pourcain, B., Francks, C., & Fisher, S. E. (2022). Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people. Proceedings of the National Academy of Sciences of the United States of America, 119(35): e2202764119. doi:10.1073/pnas.2202764119.
Abstract
The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 × 10−8) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits. -
Frangou, S., Modabbernia, A., Williams, S. C. R., Papachristou, E., Doucet, G. E., Agartz, I., Aghajani, M., Akudjedu, T. N., Albajes‐Eizagirre, A., Alnæs, D., Alpert, K. I., Andersson, M., Andreasen, N. C., Andreassen, O. A., Asherson, P., Banaschewski, T., Bargallo, N., Baumeister, S., Baur‐Streubel, R., Bertolino, A. and 181 moreFrangou, S., Modabbernia, A., Williams, S. C. R., Papachristou, E., Doucet, G. E., Agartz, I., Aghajani, M., Akudjedu, T. N., Albajes‐Eizagirre, A., Alnæs, D., Alpert, K. I., Andersson, M., Andreasen, N. C., Andreassen, O. A., Asherson, P., Banaschewski, T., Bargallo, N., Baumeister, S., Baur‐Streubel, R., Bertolino, A., Bonvino, A., Boomsma, D. I., Borgwardt, S., Bourque, J., Brandeis, D., Breier, A., Brodaty, H., Brouwer, R. M., Buitelaar, J. K., Busatto, G. F., Buckner, R. L., Calhoun, V., Canales‐Rodríguez, E. J., Cannon, D. M., Caseras, X., Castellanos, F. X., Cervenka, S., Chaim‐Avancini, T. M., Ching, C. R. K., Chubar, V., Clark, V. P., Conrod, P., Conzelmann, A., Crespo‐Facorro, B., Crivello, F., Crone, E. A., Dale, A. M., Davey, C., De Geus, E. J. C., De Haan, L., De Zubicaray, G. I., Den Braber, A., Dickie, E. W., Di Giorgio, A., Doan, N. T., Dørum, E. S., Ehrlich, S., Erk, S., Espeseth, T., Fatouros‐Bergman, H., Fisher, S. E., Fouche, J., Franke, B., Frodl, T., Fuentes‐Claramonte, P., Glahn, D. C., Gotlib, I. H., Grabe, H., Grimm, O., Groenewold, N. A., Grotegerd, D., Gruber, O., Gruner, P., Gur, R. E., Gur, R. C., Harrison, B. J., Hartman, C. A., Hatton, S. N., Heinz, A., Heslenfeld, D. J., Hibar, D. P., Hickie, I. B., Ho, B., Hoekstra, P. J., Hohmann, S., Holmes, A. J., Hoogman, M., Hosten, N., Howells, F. M., Hulshoff Pol, H. E., Huyser, C., Jahanshad, N., James, A., Jernigan, T. L., Jiang, J., Jönsson, E. G., Joska, J. A., Kahn, R., Kalnin, A., Kanai, R., Klein, M., Klyushnik, T. P., Koenders, L., Koops, S., Krämer, B., Kuntsi, J., Lagopoulos, J., Lázaro, L., Lebedeva, I., Lee, W. H., Lesch, K., Lochner, C., Machielsen, M. W. J., Maingault, S., Martin, N. G., Martínez‐Zalacaín, I., Mataix‐Cols, D., Mazoyer, B., McDonald, C., McDonald, B. C., McIntosh, A. M., McMahon, K. L., McPhilemy, G., Menchón, J. M., Medland, S. E., Meyer‐Lindenberg, A., Naaijen, J., Najt, P., Nakao, T., Nordvik, J. E., Nyberg, L., Oosterlaan, J., Ortiz‐García Foz, V., Paloyelis, Y., Pauli, P., Pergola, G., Pomarol‐Clotet, E., Portella, M. J., Potkin, S. G., Radua, J., Reif, A., Rinker, D. A., Roffman, J. L., Rosa, P. G. P., Sacchet, M. D., Sachdev, P. S., Salvador, R., Sánchez‐Juan, P., Sarró, S., Satterthwaite, T. D., Saykin, A. J., Serpa, M. H., Schmaal, L., Schnell, K., Schumann, G., Sim, K., Smoller, J. W., Sommer, I., Soriano‐Mas, C., Stein, D. J., Strike, L. T., Swagerman, S. C., Tamnes, C. K., Temmingh, H. S., Thomopoulos, S. I., Tomyshev, A. S., Tordesillas‐Gutiérrez, D., Trollor, J. N., Turner, J. A., Uhlmann, A., Van den Heuvel, O. A., Van den Meer, D., Van der Wee, N. J. A., Van Haren, N. E. M., Van 't Ent, D., Van Erp, T. G. M., Veer, I. M., Veltman, D. J., Voineskos, A., Völzke, H., Walter, H., Walton, E., Wang, L., Wang, Y., Wassink, T. H., Weber, B., Wen, W., West, J. D., Westlye, L. T., Whalley, H., Wierenga, L. M., Wittfeld, K., Wolf, D. H., Worker, A., Wright, M. J., Yang, K., Yoncheva, Y., Zanetti, M. V., Ziegler, G. C., Karolinska Schizophrenia Project (KaSP), Thompson, P. M., & Dima, D. (2022). Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years. Human Brain Mapping, 43(1), 431-451. doi:10.1002/hbm.25364.
Abstract
Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large‐scale studies. In response, we used cross‐sectional data from 17,075 individuals aged 3–90 years from the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Consortium to infer age‐related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta‐analysis and one‐way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes. -
Galke, L., & Scherp, A. (2022). Bag-of-words vs. graph vs. sequence in text classification: Questioning the necessity of text-graphs and the surprising strength of a wide MLP. In S. Muresan, P. Nakov, & A. Villavicencio (
Eds. ), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (pp. 4038-4051). Dublin: Association for Computational Linguistics. doi:10.18653/v1/2022.acl-long.279. -
Galke, L., Cuber, I., Meyer, C., Nölscher, H. F., Sonderecker, A., & Scherp, A. (2022). General cross-architecture distillation of pretrained language models into matrix embedding. In Proceedings of the IEEE Joint Conference on Neural Networks (IJCNN 2022), part of the IEEE World Congress on Computational Intelligence (WCCI 2022). doi:10.1109/IJCNN55064.2022.9892144.
Abstract
Large pretrained language models (PreLMs) are rev-olutionizing natural language processing across all benchmarks. However, their sheer size is prohibitive for small laboratories or for deployment on mobile devices. Approaches like pruning and distillation reduce the model size but typically retain the same model architecture. In contrast, we explore distilling PreLMs into a different, more efficient architecture, Continual Multiplication of Words (CMOW), which embeds each word as a matrix and uses matrix multiplication to encode sequences. We extend the CMOW architecture and its CMOW/CBOW-Hybrid variant with a bidirectional component for more expressive power, per-token representations for a general (task-agnostic) distillation during pretraining, and a two-sequence encoding scheme that facilitates downstream tasks on sentence pairs, such as sentence similarity and natural language inference. Our matrix-based bidirectional CMOW/CBOW-Hybrid model is competitive to DistilBERT on question similarity and recognizing textual entailment, but uses only half of the number of parameters and is three times faster in terms of inference speed. We match or exceed the scores of ELMo for all tasks of the GLUE benchmark except for the sentiment analysis task SST-2 and the linguistic acceptability task CoLA. However, compared to previous cross-architecture distillation approaches, we demonstrate a doubling of the scores on detecting linguistic acceptability. This shows that matrix-based embeddings can be used to distill large PreLM into competitive models and motivates further research in this direction. -
Guadalupe, T., Kong, X., Akkermans, S. E. A., Fisher, S. E., & Francks, C. (2022). Relations between hemispheric asymmetries of grey matter and auditory processing of spoken syllables in 281 healthy adults. Brain Structure & Function, 227, 561-572. doi:10.1007/s00429-021-02220-z.
Abstract
Most people have a right-ear advantage for the perception of spoken syllables, consistent with left hemisphere dominance for speech processing. However, there is considerable variation, with some people showing left-ear advantage. The extent to which this variation is reflected in brain structure remains unclear. We tested for relations between hemispheric asymmetries of auditory processing and of grey matter in 281 adults, using dichotic listening and voxel-based morphometry. This was the largest study of this issue to date. Per-voxel asymmetry indexes were derived for each participant following registration of brain magnetic resonance images to a template that was symmetrized. The asymmetry index derived from dichotic listening was related to grey matter asymmetry in clusters of voxels corresponding to the amygdala and cerebellum lobule VI. There was also a smaller, non-significant cluster in the posterior superior temporal gyrus, a region of auditory cortex. These findings contribute to the mapping of asymmetrical structure–function links in the human brain and suggest that subcortical structures should be investigated in relation to hemispheric dominance for speech processing, in addition to auditory cortex.Additional information
supplementary information -
Heim, F. (2022). Singing is silver, hearing is gold: Impacts of local FoxP1 knockdowns on auditory perception and gene expression in female zebra finches. PhD Thesis, Leiden University, Leiden.
Additional information
link to Leiden University Scholarly Publications -
Hoogman, M., Van Rooij, D., Klein, M., Boedhoe, P., Ilioska, I., Li, T., Patel, Y., Postema, M., Zhang-James, Y., Anagnostou, E., Arango, C., Auzias, G., Banaschewski, T., Bau, C. H. D., Behrmann, M., Bellgrove, M. A., Brandeis, D., Brem, S., Busatto, G. F., Calderoni, S. and 60 moreHoogman, M., Van Rooij, D., Klein, M., Boedhoe, P., Ilioska, I., Li, T., Patel, Y., Postema, M., Zhang-James, Y., Anagnostou, E., Arango, C., Auzias, G., Banaschewski, T., Bau, C. H. D., Behrmann, M., Bellgrove, M. A., Brandeis, D., Brem, S., Busatto, G. F., Calderoni, S., Calvo, R., Castellanos, F. X., Coghill, D., Conzelmann, A., Daly, E., Deruelle, C., Dinstein, I., Durston, S., Ecker, C., Ehrlich, S., Epstein, J. N., Fair, D. A., Fitzgerald, J., Freitag, C. M., Frodl, T., Gallagher, L., Grevet, E. H., Haavik, J., Hoekstra, P. J., Janssen, J., Karkashadze, G., King, J. A., Konrad, K., Kuntsi, J., Lazaro, L., Lerch, J. P., Lesch, K.-P., Louza, M. R., Luna, B., Mattos, P., McGrath, J., Muratori, F., Murphy, C., Nigg, J. T., Oberwelland-Weiss, E., O'Gorman Tuura, R. L., O'Hearn, K., Oosterlaan, J., Parellada, M., Pauli, P., Plessen, K. J., Ramos-Quiroga, J. A., Reif, A., Reneman, L., Retico, A., Rosa, P. G. P., Rubia, K., Shaw, P., Silk, T. J., Tamm, L., Vilarroya, O., Walitza, S., Jahanshad, N., Faraone, S. V., Francks, C., Van den Heuvel, O. A., Paus, T., Thompson, P. M., Buitelaar, J. K., & Franke, B. (2022). Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder: The ENIGMA adventure. Human Brain Mapping, 43(1), 37-55. doi:10.1002/hbm.25029.
Abstract
Abstract Neuroimaging has been extensively used to study brain structure and function in individuals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) over the past decades. Two of the main shortcomings of the neuroimaging literature of these disorders are the small sample sizes employed and the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and ENIGMA-ASD working groups were respectively, founded with a common goal to address these limitations. Here, we provide a narrative review of the thus far completed and still ongoing projects of these working groups. Due to an implicitly hierarchical psychiatric diagnostic classification system, the fields of ADHD and ASD have developed largely in isolation, despite the considerable overlap in the occurrence of the disorders. The collaboration between the ENIGMA-ADHD and -ASD working groups seeks to bring the neuroimaging efforts of the two disorders closer together. The outcomes of case–control studies of subcortical and cortical structures showed that subcortical volumes are similarly affected in ASD and ADHD, albeit with small effect sizes. Cortical analyses identified unique differences in each disorder, but also considerable overlap between the two, specifically in cortical thickness. Ongoing work is examining alternative research questions, such as brain laterality, prediction of case–control status, and anatomical heterogeneity. In brief, great strides have been made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and follow-up analyses continue that include more imaging modalities (diffusion MRI and resting-state functional MRI), collaborations with other large databases, and samples with dual diagnoses. -
Kong, X., ENIGMA Laterality Working Group, & Francks, C. (2022). Reproducibility in the absence of selective reporting: An illustration from large‐scale brain asymmetry research. Human Brain Mapping, 43(1), 244-254. doi:10.1002/hbm.25154.
Abstract
The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p‐hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left–right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta‐analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an “ideal publishing environment,” that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically‐used sample sizes.Additional information
hbm25154-sup-0001-supinfo.docx hbm25154-sup-0002-figures1.pdf Data and scripts -
Kong, X., Postema, M., Guadalupe, T., De Kovel, C. G. F., Boedhoe, P. S. W., Hoogman, M., Mathias, S. R., Van Rooij, D., Schijven, D., Glahn, D. C., Medland, S. E., Jahanshad, N., Thomopoulos, S. I., Turner, J. A., Buitelaar, J., Van Erp, T. G. M., Franke, B., Fisher, S. E., Van den Heuvel, O. A., Schmaal, L. and 2 moreKong, X., Postema, M., Guadalupe, T., De Kovel, C. G. F., Boedhoe, P. S. W., Hoogman, M., Mathias, S. R., Van Rooij, D., Schijven, D., Glahn, D. C., Medland, S. E., Jahanshad, N., Thomopoulos, S. I., Turner, J. A., Buitelaar, J., Van Erp, T. G. M., Franke, B., Fisher, S. E., Van den Heuvel, O. A., Schmaal, L., Thompson, P. M., & Francks, C. (2022). Mapping brain asymmetry in health and disease through the ENIGMA consortium. Human Brain Mapping, 43(1), 167-181. doi:10.1002/hbm.25033.
Abstract
Left-right asymmetry of the human brain is one of its cardinal features, and also a complex, multivariate trait. Decades of research have suggested that brain asymmetry may be altered in psychiatric disorders. However, findings have been inconsistent and often based on small sample sizes. There are also open questions surrounding which structures are asymmetrical on average in the healthy population, and how variability in brain asymmetry relates to basic biological variables such as age and sex. Over the last four years, the ENIGMA-Laterality Working Group has published six studies of grey matter morphological asymmetry based on total sample sizes from roughly 3,500 to 17,000 individuals, which were between one and two orders of magnitude larger than those published in previous decades. A population-level mapping of average asymmetry was achieved, including an
intriguing fronto-occipital gradient of cortical thickness asymmetry in healthy brains. ENIGMA’s multidataset approach also supported an empirical illustration of reproducibility of hemispheric differences across datasets. Effect sizes were estimated for grey matter asymmetry based on large, international,
samples in relation to age, sex, handedness, and brain volume, as well as for three psychiatric disorders:Autism Spectrum Disorder was associated with subtly reduced asymmetry of cortical thickness at regions spread widely over the cortex; Pediatric Obsessive-Compulsive Disorder was associated with altered subcortical asymmetry; Major Depressive Disorder was not significantly associated with changes
of asymmetry. Ongoing studies are examining brain asymmetry in other disorders. Moreover, a groundwork has been laid for possibly identifying shared genetic contributions to brain asymmetry and disorders. -
Laureys, F., De Waelle, S., Barendse, M. T., Lenoir, M., & Deconinck, F. J. (2022). The factor structure of executive function in childhood and adolescence. Intelligence, 90: 101600. doi:10.1016/j.intell.2021.101600.
Abstract
Executive functioning (EF) plays a major role in many domains of human behaviour, including self-regulation, academic achievement, and even sports expertise. While a significant proportion of cross-sectional research has focused on the developmental pathways of EF, the existing literature is fractionated due to a wide range of methodologies applied to narrow age ranges, impeding comparison across a broad range of age groups. The current study used a cross-sectional design to investigate the factor structure of EF within late childhood and adolescence. A total of 2166 Flemish children and adolescents completed seven tasks of the Cambridge Brain Sciences test battery. Based on the existing literature, a Confirmatory Factor Analysis was performed, which indicated that a unitary factor model provides the best fit for the youngest age group (7–12 years). For the adolescents (12–18 years), the factor structure consists of four different components, including working memory, shifting, inhibition and planning. With regard to differences between early (12–15 years) and late (15–18 years) adolescents, working memory, inhibition and planning show higher scores for the late adolescents, while there was no difference on shifting. The current study is one of the first to administer the same seven EF tests in a considerably large sample of children and adolescents, and as such contributes to the understanding of the developmental trends in EF. Future studies, especially with longitudinal designs, are encouraged to further increase the knowledge concerning the factor structure of EF, and the development of the different EF components. -
Molz, B., Herbik, A., Baseler, H. A., de Best, P. B., Vernon, R. W., Raz, N., Gouws, A. D., Ahmadi, K., Lowndes, R., McLean, R. J., Gottlob, I., Kohl, S., Choritz, L., Maguire, J., Kanowski, M., Käsmann-Kellner, B., Wieland, I., Banin, E., Levin, N., Hoffmann, M. B. and 1 moreMolz, B., Herbik, A., Baseler, H. A., de Best, P. B., Vernon, R. W., Raz, N., Gouws, A. D., Ahmadi, K., Lowndes, R., McLean, R. J., Gottlob, I., Kohl, S., Choritz, L., Maguire, J., Kanowski, M., Käsmann-Kellner, B., Wieland, I., Banin, E., Levin, N., Hoffmann, M. B., & Morland, A. B. (2022). Structural changes to primary visual cortex in the congenital absence of cone input in achromatopsia. NeuroImage: Clinical, 33: 102925. doi:10.1016/j.nicl.2021.102925.
Abstract
Autosomal recessive Achromatopsia (ACHM) is a rare inherited disorder associated with dysfunctional cone photoreceptors resulting in a congenital absence of cone input to visual cortex. This might lead to distinct changes in cortical architecture with a negative impact on the success of gene augmentation therapies. To investigate the status of the visual cortex in these patients, we performed a multi-centre study focusing on the cortical structure of regions that normally receive predominantly cone input. Using high-resolution T1-weighted MRI scans and surface-based morphometry, we compared cortical thickness, surface area and grey matter volume in foveal, parafoveal and paracentral representations of primary visual cortex in 15 individuals with ACHM and 42 normally sighted, healthy controls (HC). In ACHM, surface area was reduced in all tested representations, while thickening of the cortex was found highly localized to the most central representation. These results were comparable to more widespread changes in brain structure reported in congenitally blind individuals, suggesting similar developmental processes, i.e., irrespective of the underlying cause and extent of vision loss. The cortical differences we report here could limit the success of treatment of ACHM in adulthood. Interventions earlier in life when cortical structure is not different from normal would likely offer better visual outcomes for those with ACHM. -
Nayak, S., Coleman, P. L., Ladányi, E., Nitin, R., Gustavson, D. E., Fisher, S. E., Magne, C. L., & Gordon, R. L. (2022). The Musical Abilities, Pleiotropy, Language, and Environment (MAPLE) framework for understanding musicality-language links across the lifespan. Neurobiology of Language, 3(4), 615-664. doi:10.1162/nol_a_00079.
Abstract
Using individual differences approaches, a growing body of literature finds positive associations between musicality and language-related abilities, complementing prior findings of links between musical training and language skills. Despite these associations, musicality has been often overlooked in mainstream models of individual differences in language acquisition and development. To better understand the biological basis of these individual differences, we propose the Musical Abilities, Pleiotropy, Language, and Environment (MAPLE) framework. This novel integrative framework posits that musical and language-related abilities likely share some common genetic architecture (i.e., genetic pleiotropy) in addition to some degree of overlapping neural endophenotypes, and genetic influences on musically and linguistically enriched environments. Drawing upon recent advances in genomic methodologies for unraveling pleiotropy, we outline testable predictions for future research on language development and how its underlying neurobiological substrates may be supported by genetic pleiotropy with musicality. In support of the MAPLE framework, we review and discuss findings from over seventy behavioral and neural studies, highlighting that musicality is robustly associated with individual differences in a range of speech-language skills required for communication and development. These include speech perception-in-noise, prosodic perception, morphosyntactic skills, phonological skills, reading skills, and aspects of second/foreign language learning. Overall, the current work provides a clear agenda and framework for studying musicality-language links using individual differences approaches, with an emphasis on leveraging advances in the genomics of complex musicality and language traits. -
Neumann, A., Nolte, I. M., Pappa, I., Ahluwalia, T. S., Pettersson, E., Rodriguez, A., Whitehouse, A., Van Beijsterveldt, C. E. M., Benyamin, B., Hammerschlag, A. R., Helmer, Q., Karhunen, V., Krapohl, E., Lu, Y., Van der Most, P. J., Palviainen, T., St Pourcain, B., Seppälä, I., Suarez, A., Vilor-Tejedor, N. and 41 moreNeumann, A., Nolte, I. M., Pappa, I., Ahluwalia, T. S., Pettersson, E., Rodriguez, A., Whitehouse, A., Van Beijsterveldt, C. E. M., Benyamin, B., Hammerschlag, A. R., Helmer, Q., Karhunen, V., Krapohl, E., Lu, Y., Van der Most, P. J., Palviainen, T., St Pourcain, B., Seppälä, I., Suarez, A., Vilor-Tejedor, N., Tiesler, C. M. T., Wang, C., Wills, A., Zhou, A., Alemany, S., Bisgaard, H., Bønnelykke, K., Davies, G. E., Hakulinen, C., Henders, A. K., Hyppönen, E., Stokholm, J., Bartels, M., Hottenga, J.-J., Heinrich, J., Hewitt, J., Keltikangas-Järvinen, L., Korhonen, T., Kaprio, J., Lahti, J., Lahti-Pulkkinen, M., Lehtimäki, T., Middeldorp, C. M., Najman, J. M., Pennell, C., Power, C., Oldehinkel, A. J., Plomin, R., Räikkönen, K., Raitakari, O. T., Rimfeld, K., Sass, L., Snieder, H., Standl, M., Sunyer, J., Williams, G. M., Bakermans-Kranenburg, M. J., Boomsma, D. I., Van IJzendoorn, M. H., Hartman, C. A., & Tiemeier, H. (2022). A genome-wide association study of total child psychiatric problems scores. PLOS ONE, 17(8): e0273116. doi:10.1371/journal.pone.0273116.
Abstract
Substantial genetic correlations have been reported across psychiatric disorders and numerous cross-disorder genetic variants have been detected. To identify the genetic variants underlying general psychopathology in childhood, we performed a genome-wide association study using a total psychiatric problem score. We analyzed 6,844,199 common SNPs in 38,418 school-aged children from 20 population-based cohorts participating in the EAGLE consortium. The SNP heritability of total psychiatric problems was 5.4% (SE = 0.01) and two loci reached genome-wide significance: rs10767094 and rs202005905. We also observed an association of SBF2, a gene associated with neuroticism in previous GWAS, with total psychiatric problems. The genetic effects underlying the total score were shared with common psychiatric disorders only (attention-deficit/hyperactivity disorder, anxiety, depression, insomnia) (rG > 0.49), but not with autism or the less common adult disorders (schizophrenia, bipolar disorder, or eating disorders) (rG < 0.01). Importantly, the total psychiatric problem score also showed at least a moderate genetic correlation with intelligence, educational attainment, wellbeing, smoking, and body fat (rG > 0.29). The results suggest that many common genetic variants are associated with childhood psychiatric symptoms and related phenotypes in general instead of with specific symptoms. Further research is needed to establish causality and pleiotropic mechanisms between related traits.Additional information
Full summary results -
Niarchou, M., Gustavson, D. E., Sathirapongsasuti, J. F., Anglada-Tort, M., Eising, E., Bell, E., McArthur, E., Straub, P., The 23andMe Research Team, McAuley, J. D., Capra, J. A., Ullén, F., Creanza, N., Mosing, M. A., Hinds, D., Davis, L. K., Jacoby, N., & Gordon, R. L. (2022). Genome-wide association study of musical beat synchronization demonstrates high polygenicity. Nature Human Behaviour, 6(9), 1292-1309. doi:10.1038/s41562-022-01359-x.
Abstract
Moving in synchrony to the beat is a fundamental component of musicality. Here we conducted a genome-wide association study to identify common genetic variants associated with beat synchronization in 606,825 individuals. Beat synchronization exhibited a highly polygenic architecture, with 69 loci reaching genome-wide significance (P < 5 × 10−8) and single-nucleotide-polymorphism-based heritability (on the liability scale) of 13%–16%. Heritability was enriched for genes expressed in brain tissues and for fetal and adult brain-specific gene regulatory elements, underscoring the role of central-nervous-system-expressed genes linked to the genetic basis of the trait. We performed validations of the self-report phenotype (through separate experiments) and of the genome-wide association study (polygenic scores for beat synchronization were associated with patients algorithmically classified as musicians in medical records of a separate biobank). Genetic correlations with breathing function, motor function, processing speed and chronotype suggest shared genetic architecture with beat synchronization and provide avenues for new phenotypic and genetic explorations.Additional information
supplementary information -
Park, B.-y., Larivière, S., Rodríguez-Cruces, R., Royer, J., Tavakol, S., Wang, Y., Caciagli, L., Caligiuri, M. E., Gambardella, A., Concha, L., Keller, S. S., Cendes, F., Alvim, M. K. M., Yasuda, C., Bonilha, L., Gleichgerrcht, E., Focke, N. K., Kreilkamp, B. A. K., Domin, M., Von Podewils, F. and 66 morePark, B.-y., Larivière, S., Rodríguez-Cruces, R., Royer, J., Tavakol, S., Wang, Y., Caciagli, L., Caligiuri, M. E., Gambardella, A., Concha, L., Keller, S. S., Cendes, F., Alvim, M. K. M., Yasuda, C., Bonilha, L., Gleichgerrcht, E., Focke, N. K., Kreilkamp, B. A. K., Domin, M., Von Podewils, F., Langner, S., Rummel, C., Rebsamen, M., Wiest, R., Martin, P., Kotikalapudi, R., Bender, B., O’Brien, T. J., Law, M., Sinclair, B., Vivash, L., Desmond, P. M., Malpas, C. B., Lui, E., Alhusaini, S., Doherty, C. P., Cavalleri, G. L., Delanty, N., Kälviäinen, R., Jackson, G. D., Kowalczyk, M., Mascalchi, M., Semmelroch, M., Thomas, R. H., Soltanian-Zadeh, H., Davoodi-Bojd, E., Zhang, J., Lenge, M., Guerrini, R., Bartolini, E., Hamandi, K., Foley, S., Weber, B., Depondt, C., Absil, J., Carr, S. J. A., Abela, E., Richardson, M. P., Devinsky, O., Severino, M., Striano, P., Parodi, C., Tortora, D., Hatton, S. N., Vos, S. B., Duncan, J. S., Galovic, M., Whelan, C. D., Bargalló, N., Pariente, J., Conde, E., Vaudano, A. E., Tondelli, M., Meletti, S., Kong, X., Francks, C., Fisher, S. E., Caldairou, B., Ryten, M., Labate, A., Sisodiya, S. M., Thompson, P. M., McDonald, C. R., Bernasconi, A., Bernasconi, N., & Bernhardt, B. C. (2022). Topographic divergence of atypical cortical asymmetry and atrophy patterns in temporal lobe epilepsy. Brain, 145(4), 1285-1298. doi:10.1093/brain/awab417.
Abstract
Temporal lobe epilepsy (TLE), a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter structural alterations in TLE relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated.
Here, we addressed this gap using the multi-site ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 TLE patients and 1,418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in TLE, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained from Human Connectome Project and an independent dataset containing 23 TLE patients and 53 healthy controls, and examined clinical associations using machine learning.
We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables.
Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of TLE-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of TLE and may inform future discovery and validation of complementary MRI biomarkers in TLE.Additional information
awab417_supplementary_data.pdf -
Price, K. M., Wigg, K. G., Eising, E., Feng, Y., Blokland, K., Wilkinson, M., Kerr, E. N., Guger, S. L., Quantitative Trait Working Group of the GenLang Consortium, Fisher, S. E., Lovett, M. W., Strug, L. J., & Barr, C. L. (2022). Hypothesis-driven genome-wide association studies provide novel insights into genetics of reading disabilities. Translational Psychiatry, 12: 495. doi:10.1038/s41398-022-02250-z.
Abstract
Reading Disability (RD) is often characterized by difficulties in the phonology of the language. While the molecular mechanisms underlying it are largely undetermined, loci are being revealed by genome-wide association studies (GWAS). In a previous GWAS for word reading (Price, 2020), we observed that top single-nucleotide polymorphisms (SNPs) were located near to or in genes involved in neuronal migration/axon guidance (NM/AG) or loci implicated in autism spectrum disorder (ASD). A prominent theory of RD etiology posits that it involves disturbed neuronal migration, while potential links between RD-ASD have not been extensively investigated. To improve power to identify associated loci, we up-weighted variants involved in NM/AG or ASD, separately, and performed a new Hypothesis-Driven (HD)–GWAS. The approach was applied to a Toronto RD sample and a meta-analysis of the GenLang Consortium. For the Toronto sample (n = 624), no SNPs reached significance; however, by gene-set analysis, the joint contribution of ASD-related genes passed the threshold (p~1.45 × 10–2, threshold = 2.5 × 10–2). For the GenLang Cohort (n = 26,558), SNPs in DOCK7 and CDH4 showed significant association for the NM/AG hypothesis (sFDR q = 1.02 × 10–2). To make the GenLang dataset more similar to Toronto, we repeated the analysis restricting to samples selected for reading/language deficits (n = 4152). In this GenLang selected subset, we found significant association for a locus intergenic between BTG3-C21orf91 for both hypotheses (sFDR q < 9.00 × 10–4). This study contributes candidate loci to the genetics of word reading. Data also suggest that, although different variants may be involved, alleles implicated in ASD risk may be found in the same genes as those implicated in word reading. This finding is limited to the Toronto sample suggesting that ascertainment influences genetic associations. -
Raviv, L., Lupyan, G., & Green, S. C. (2022). How variability shapes learning and generalization. Trends in Cognitive Sciences, 26(6), 462-483. doi:10.1016/j.tics.2022.03.007.
Abstract
Learning is using past experiences to inform new behaviors and actions. Because all experiences are unique, learning always requires some generalization. An effective way of improving generalization is to expose learners to more variable (and thus often more representative) input. More variability tends to make initial learning more challenging, but eventually leads to more general and robust performance. This core principle has been repeatedly rediscovered and renamed in different domains (e.g., contextual diversity, desirable difficulties, variability of practice). Reviewing this basic result as it has been formulated in different domains allows us to identify key patterns, distinguish between different kinds of variability, discuss the roles of varying task-relevant versus irrelevant dimensions, and examine the effects of introducing variability at different points in training. -
Raviv, L., Jacobson, S. L., Plotnik, J. M., Bowman, J., Lynch, V., & Benítez-Burraco, A. (2022). Elephants as a new animal model for studying the evolution of language as a result of self-domestication. In A. Ravignani, R. Asano, D. Valente, F. Ferretti, S. Hartmann, M. Hayashi, Y. Jadoul, M. Martins, Y. Oseki, E. D. Rodrigues, O. Vasileva, & S. Wacewicz (
Eds. ), The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE) (pp. 606-608). Nijmegen: Joint Conference on Language Evolution (JCoLE). -
Raviv, L., Peckre, L. R., & Boeckx, C. (2022). What is simple is actually quite complex: A critical note on terminology in the domain of language and communication. Journal of Comparative Psychology, 136(4), 215-220. doi:10.1037/com0000328.
Abstract
On the surface, the fields of animal communication and human linguistics have arrived at conflicting theories and conclusions with respect to the effect of social complexity on communicative complexity. For example, an increase in group size is argued to have opposite consequences on human versus animal communication systems: although an increase in human community size leads to some types of language simplification, an increase in animal group size leads to an increase in signal complexity. But do human and animal communication systems really show such a fundamental discrepancy? Our key message is that the tension between these two adjacent fields is the result of (a) a focus on different levels of analysis (namely, signal variation or grammar-like rules) and (b) an inconsistent use of terminology (namely, the terms “simple” and “complex”). By disentangling and clarifying these terms with respect to different measures of communicative complexity, we show that although animal and human communication systems indeed show some contradictory effects with respect to signal variability, they actually display essentially the same patterns with respect to grammar-like structure. This is despite the fact that the definitions of complexity and simplicity are actually aligned for signal variability, but diverge for grammatical structure. We conclude by advocating for the use of more objective and descriptive terms instead of terms such as “complexity,” which can be applied uniformly for human and animal communication systems—leading to comparable descriptions of findings across species and promoting a more productive dialogue between fields. -
Schlag, F., Allegrini, A. G., Buitelaar, J., Verhoef, E., Van Donkelaar, M. M. J., Plomin, R., Rimfeld, K., Fisher, S. E., & St Pourcain, B. (2022). Polygenic risk for mental disorder reveals distinct association profiles across social behaviour in the general population. Molecular Psychiatry, 27, 1588-1598. doi:10.1038/s41380-021-01419-0.
Abstract
Many mental health conditions present a spectrum of social difficulties that overlaps with social behaviour in the general population including shared but little characterised genetic links. Here, we systematically investigate heterogeneity in shared genetic liabilities with attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASD), bipolar disorder (BP), major depression (MD) and schizophrenia across a spectrum of different social symptoms. Longitudinally assessed low-prosociality and peer-problem scores in two UK population-based cohorts (4–17 years; parent- and teacher-reports; Avon Longitudinal Study of Parents and Children(ALSPAC): N ≤ 6,174; Twins Early Development Study(TEDS): N ≤ 7,112) were regressed on polygenic risk scores for disorder, as informed by genome-wide summary statistics from large consortia, using negative binomial regression models. Across ALSPAC and TEDS, we replicated univariate polygenic associations between social behaviour and risk for ADHD, MD and schizophrenia. Modelling variation in univariate genetic effects jointly using random-effect meta-regression revealed evidence for polygenic links between social behaviour and ADHD, ASD, MD, and schizophrenia risk, but not BP. Differences in age, reporter and social trait captured 45–88% in univariate effect variation. Cross-disorder adjusted analyses demonstrated that age-related heterogeneity in univariate effects is shared across mental health conditions, while reporter- and social trait-specific heterogeneity captures disorder-specific profiles. In particular, ADHD, MD, and ASD polygenic risk were more strongly linked to peer problems than low prosociality, while schizophrenia was associated with low prosociality only. The identified association profiles suggest differences in the social genetic architecture across mental disorders when investigating polygenic overlap with population-based social symptoms spanning 13 years of child and adolescent development. -
Sha, Z., Van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Bernhardt, B., Bolte, S., Busatto, G. F., Calderoni, S., Calvo, R., Daly, E., Deruelle, C., Duan, M., Duran, F. L. S., Durston, S., Ecker, C., Ehrlich, S., Fair, D., Fedor, J. and 38 moreSha, Z., Van Rooij, D., Anagnostou, E., Arango, C., Auzias, G., Behrmann, M., Bernhardt, B., Bolte, S., Busatto, G. F., Calderoni, S., Calvo, R., Daly, E., Deruelle, C., Duan, M., Duran, F. L. S., Durston, S., Ecker, C., Ehrlich, S., Fair, D., Fedor, J., Fitzgerald, J., Floris, D. L., Franke, B., Freitag, C. M., Gallagher, L., Glahn, D. C., Haar, S., Hoekstra, L., Jahanshad, N., Jalbrzikowski, M., Janssen, J., King, J. A., Lazaro, L., Luna, B., McGrath, J., Medland, S. E., Muratori, F., Murphy, D. G., Neufeld, J., O’Hearn, K., Oranje, B., Parellada, M., Pariente, J. C., Postema, M., Remnelius, K. L., Retico, A., Rosa, P. G. P., Rubia, K., Shook, D., Tammimies, K., Taylor, M. J., Tosetti, M., Wallace, G. L., Zhou, F., Thompson, P. M., Fisher, S. E., Buitelaar, J. K., & Francks, C. (2022). Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Molecular Psychiatry, 27, 2114-2125. doi:10.1038/s41380-022-01452-7.
Abstract
Small average differences in the left-right asymmetry of cerebral cortical thickness have been reported in individuals with autism spectrum disorder (ASD) compared to typically developing controls, affecting widespread cortical regions. The possible impacts of these regional alterations in terms of structural network effects have not previously been characterized. Inter-regional morphological covariance analysis can capture network connectivity between different cortical areas at the macroscale level. Here, we used cortical thickness data from 1455 individuals with ASD and 1560 controls, across 43 independent datasets of the ENIGMA consortium’s ASD Working Group, to assess hemispheric asymmetries of intra-individual structural covariance networks, using graph theory-based topological metrics. Compared with typical features of small-world architecture in controls, the ASD sample showed significantly altered average asymmetry of networks involving the fusiform, rostral middle frontal, and medial orbitofrontal cortex, involving higher randomization of the corresponding right-hemispheric networks in ASD. A network involving the superior frontal cortex showed decreased right-hemisphere randomization. Based on comparisons with meta-analyzed functional neuroimaging data, the altered connectivity asymmetry particularly affected networks that subserve executive functions, language-related and sensorimotor processes. These findings provide a network-level characterization of altered left-right brain asymmetry in ASD, based on a large combined sample. Altered asymmetrical brain development in ASD may be partly propagated among spatially distant regions through structural connectivity. -
Sønderby, I. E., Ching, C. R. K., Thomopoulos, S. I., Van der Meer, D., Sun, D., Villalon‐Reina, J. E., Agartz, I., Amunts, K., Arango, C., Armstrong, N. J., Ayesa‐Arriola, R., Bakker, G., Bassett, A. S., Boomsma, D. I., Bülow, R., Butcher, N. J., Calhoun, V. D., Caspers, S., Chow, E. W. C., Cichon, S. and 84 moreSønderby, I. E., Ching, C. R. K., Thomopoulos, S. I., Van der Meer, D., Sun, D., Villalon‐Reina, J. E., Agartz, I., Amunts, K., Arango, C., Armstrong, N. J., Ayesa‐Arriola, R., Bakker, G., Bassett, A. S., Boomsma, D. I., Bülow, R., Butcher, N. J., Calhoun, V. D., Caspers, S., Chow, E. W. C., Cichon, S., Ciufolini, S., Craig, M. C., Crespo‐Facorro, B., Cunningham, A. C., Dale, A. M., Dazzan, P., De Zubicaray, G. I., Djurovic, S., Doherty, J. L., Donohoe, G., Draganski, B., Durdle, C. A., Ehrlich, S., Emanuel, B. S., Espeseth, T., Fisher, S. E., Ge, T., Glahn, D. C., Grabe, H. J., Gur, R. E., Gutman, B. A., Haavik, J., Håberg, A. K., Hansen, L. A., Hashimoto, R., Hibar, D. P., Holmes, A. J., Hottenga, J., Hulshoff Pol, H. E., Jalbrzikowski, M., Knowles, E. E. M., Kushan, L., Linden, D. E. J., Liu, J., Lundervold, A. J., Martin‐Brevet, S., Martínez, K., Mather, K. A., Mathias, S. R., McDonald‐McGinn, D. M., McRae, A. F., Medland, S. E., Moberget, T., Modenato, C., Monereo Sánchez, J., Moreau, C. A., Mühleisen, T. W., Paus, T., Pausova, Z., Prieto, C., Ragothaman, A., Reinbold, C. S., Reis Marques, T., Repetto, G. M., Reymond, A., Roalf, D. R., Rodriguez‐Herreros, B., Rucker, J. J., Sachdev, P. S., Schmitt, J. E., Schofield, P. R., Silva, A. I., Stefansson, H., Stein, D. J., Tamnes, C. K., Tordesillas‐Gutiérrez, D., Ulfarsson, M. O., Vajdi, A., Van 't Ent, D., Van den Bree, M. B. M., Vassos, E., Vázquez‐Bourgon, J., Vila‐Rodriguez, F., Walters, G. B., Wen, W., Westlye, L. T., Wittfeld, K., Zackai, E. H., Stefánsson, K., Jacquemont, S., Thompson, P. M., Bearden, C. E., Andreassen, O. A., the ENIGMA-CNV Working Group, & the ENIGMA 22q11.2 Deletion Syndrome Working Group (2022). Effects of copy number variations on brain structure and risk for psychiatric illness: Large‐scale studies from the ENIGMAworking groups on CNVs. Human Brain Mapping, 43(1), 300-328. doi:10.1002/hbm.25354.
Abstract
The Enhancing NeuroImaging Genetics through Meta‐Analysis copy number variant (ENIGMA‐CNV) and 22q11.2 Deletion Syndrome Working Groups (22q‐ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA‐CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q‐ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest‐ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi‐site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene‐dosage effects on distinct brain regions also emerged, providing further insight into genotype–phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This “genotype‐first” approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior. -
Tielbeek, J. J., Uffelmann, E., Williams, B. S., Colodro-Conde, L., Gagnon, É., Mallard, T. T., Levitt, B., Jansen, P. R., Johansson, A., Sallis, H. M., Pistis, G., Saunders, G. R. B., Allegrini, A. G., Rimfeld, K., Konte, B., Klein, M., Hartmann, A. M., Salvatore, J. E., Nolte, I. M., Demontis, D. and 63 moreTielbeek, J. J., Uffelmann, E., Williams, B. S., Colodro-Conde, L., Gagnon, É., Mallard, T. T., Levitt, B., Jansen, P. R., Johansson, A., Sallis, H. M., Pistis, G., Saunders, G. R. B., Allegrini, A. G., Rimfeld, K., Konte, B., Klein, M., Hartmann, A. M., Salvatore, J. E., Nolte, I. M., Demontis, D., Malmberg, A., Burt, S. A., Savage, J., Sugden, K., Poulton, R., Harris, K. M., Vrieze, S., McGue, M., Iacono, W. G., Mota, N. R., Mill, J., Viana, J. F., Mitchell, B. L., Morosoli, J. J., Andlauer, T., Ouellet-Morin, I., Tremblay, R. E., Côté, S., Gouin, J.-P., Brendgen, M., Dionne, G., Vitaro, F., Lupton, M. K., Martin, N. G., COGA Consortium, Spit for Science Working Group, Castelao, E., Räikkönen, K., Eriksson, J., Lahti, J., Hartman, C. A., Oldehinkel, A. J., Snieder, H., Liu, H., Preisig, M., Whipp, A., Vuoksimaa, E., Lu, Y., Jern, P., Rujescu, D., Giegling, I., Palviainen, T., Kaprio, J., Harden, K. P., Munafò, M. R., Morneau-Vaillancourt, G., Plomin, R., Viding, E., Boutwell, B. B., Aliev, F., Dick, D., Popma, A., Faraone, S. V., Børglum, A. D., Medland, S. E., Franke, B., Boivin, M., Pingault, J.-B., Glennon, J. C., Barnes, J. C., Fisher, S. E., Moffitt, T. E., Caspi, A., Polderman, T. J., & Posthuma, D. (2022). Uncovering the genetic architecture of broad antisocial behavior through a genome-wide association study meta-analysis. Molecular Psychiatry, 27(11), 4453-4463. doi:10.1038/s41380-022-01793-3.
Abstract
Despite the substantial heritability of antisocial behavior (ASB), specific genetic variants robustly associated with the trait have not been identified. The present study by the Broad Antisocial Behavior Consortium (BroadABC) meta-analyzed data from 28 discovery samples (N = 85,359) and five independent replication samples (N = 8058) with genotypic data and broad measures of ASB. We identified the first significant genetic associations with broad ASB, involving common intronic variants in the forkhead box protein P2 (FOXP2) gene (lead SNP rs12536335, p = 6.32 × 10−10). Furthermore, we observed intronic variation in Foxp2 and one of its targets (Cntnap2) distinguishing a mouse model of pathological aggression (BALB/cJ strain) from controls (BALB/cByJ strain). Polygenic risk score (PRS) analyses in independent samples revealed that the genetic risk for ASB was associated with several antisocial outcomes across the lifespan, including diagnosis of conduct disorder, official criminal convictions, and trajectories of antisocial development. We found substantial genetic correlations of ASB with mental health (depression rg = 0.63, insomnia rg = 0.47), physical health (overweight rg = 0.19, waist-to-hip ratio rg = 0.32), smoking (rg = 0.54), cognitive ability (intelligence rg = −0.40), educational attainment (years of schooling rg = −0.46) and reproductive traits (age at first birth rg = −0.58, father’s age at death rg = −0.54). Our findings provide a starting point toward identifying critical biosocial risk mechanisms for the development of ASB. -
Trupp, M. D., Bignardi, G., Chana, K., Specker, E., & Pelowski, M. (2022). Can a brief interaction with online, digital art improve wellbeing? A comparative study of the impact of online art and culture presentations on mood, state-anxiety, subjective wellbeing, and loneliness. Frontiers in Psychology, 13: 782033. doi:10.3389/fpsyg.2022.782033.
Abstract
When experienced in-person, engagement with art has been associated—in a growing body of evidence—with positive outcomes in wellbeing and mental health. This represents an exciting new field for psychology, curation, and health interventions, suggesting a widely-accessible, cost-effective, and non-pharmaceutical means of regulating factors such as mood or anxiety. However, can similar impacts be found with online presentations? If so, this would open up positive outcomes to an even-wider population—a trend accelerating due to the current COVID-19 pandemic. Despite its promise, this question, and the underlying mechanisms of art interventions and impacts, has largely not been explored. Participants (N = 84) were asked to engage with one of two online exhibitions from Google Arts and Culture (a Monet painting or a similarly-formatted display of Japanese culinary traditions). With just 1–2 min exposure, both improved negative mood, state-anxiety, loneliness, and wellbeing. Stepdown analysis suggested the changes can be explained primarily via negative mood, while improvements in mood correlated with aesthetic appraisals and cognitive-emotional experience of the exhibition. However, no difference was found between exhibitions. We discuss the findings in terms of applications and targets for future research.Additional information
supplementary materials -
Vagliano, I., Galke, L., & Scherp, A. (2022). Recommendations for item set completion: On the semantics of item co-occurrence with data sparsity, input size, and input modalities. Information Retrieval Journal, 25(3), 269-305. doi:10.1007/s10791-022-09408-9.
Abstract
We address the problem of recommending relevant items to a user in order to "complete" a partial set of items already known. We consider the two scenarios of citation and subject label recommendation, which resemble different semantics of item co-occurrence: relatedness for co-citations and diversity for subject labels. We assess the influence of the completeness of an already known partial item set on the recommender performance. We also investigate data sparsity through a pruning parameter and the influence of using additional metadata. As recommender models, we focus on different autoencoders, which are particularly suited for reconstructing missing items in a set. We extend autoencoders to exploit a multi-modal input of text and structured data. Our experiments on six real-world datasets show that supplying the partial item set as input is helpful when item co-occurrence resembles relatedness, while metadata are effective when co-occurrence implies diversity. This outcome means that the semantics of item co-occurrence is an important factor. The simple item co-occurrence model is a strong baseline for citation recommendation. However, autoencoders have the advantage to enable exploiting additional metadata besides the partial item set as input and achieve comparable performance. For the subject label recommendation task, the title is the most important attribute. Adding more input modalities sometimes even harms the result. In conclusion, it is crucial to consider the semantics of the item co-occurrence for the choice of an appropriate recommendation model and carefully decide which metadata to exploit. -
Van der Spek, J., Den Hoed, J., Snijders Blok, L., Dingemans, A. J. M., Schijven, D., Nellaker, C., Venselaar, H., Astuti, G. D. N., Barakat, T. S., Bebin, E. M., Beck-Wödl, S., Beunders, G., Brown, N. J., Brunet, T., Brunner, H. G., Campeau, P. M., Čuturilo, G., Gilissen, C., Haack, T. B., Hüning, I. and 26 moreVan der Spek, J., Den Hoed, J., Snijders Blok, L., Dingemans, A. J. M., Schijven, D., Nellaker, C., Venselaar, H., Astuti, G. D. N., Barakat, T. S., Bebin, E. M., Beck-Wödl, S., Beunders, G., Brown, N. J., Brunet, T., Brunner, H. G., Campeau, P. M., Čuturilo, G., Gilissen, C., Haack, T. B., Hüning, I., Husain, R. A., Kamien, B., Lim, S. C., Lovrecic, L., Magg, J., Maver, A., Miranda, V., Monteil, D. C., Ockeloen, C. W., Pais, L. S., Plaiasu, V., Raiti, L., Richmond, C., Rieß, A., Schwaibold, E. M. C., Simon, M. E. H., Spranger, S., Tan, T. Y., Thompson, M. L., De Vries, B. B., Wilkins, E. J., Willemsen, M. H., Francks, C., Vissers, L. E. L. M., Fisher, S. E., & Kleefstra, T. (2022). Inherited variants in CHD3 show variable expressivity in Snijders Blok-Campeau syndrome. Genetics in Medicine, 24(6), 1283-1296. doi:10.1016/j.gim.2022.02.014.
Abstract
Purpose
Common diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed.
Methods
We characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome.
Results
Computational facial and Human Phenotype Ontology–based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted.
Conclusion
Our results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease. -
Van den Heuvel, O. A., Boedhoe, P. S., Bertolin, S., Bruin, W. B., Francks, C., Ivanov, I., Jahanshad, N., Kong, X., Kwon, J. S., O'Neill, J., Paus, T., Patel, Y., Piras, F., Schmaal, L., Soriano-Mas, C., Spalletta, G., Van Wingen, G. A., Yun, J.-Y., Vriend, C., Simpson, H. B. and 43 moreVan den Heuvel, O. A., Boedhoe, P. S., Bertolin, S., Bruin, W. B., Francks, C., Ivanov, I., Jahanshad, N., Kong, X., Kwon, J. S., O'Neill, J., Paus, T., Patel, Y., Piras, F., Schmaal, L., Soriano-Mas, C., Spalletta, G., Van Wingen, G. A., Yun, J.-Y., Vriend, C., Simpson, H. B., Van Rooij, D., Hoexter, M. Q., Hoogman, M., Buitelaar, J. K., Arnold, P., Beucke, J. C., Benedetti, F., Bollettini, I., Bose, A., Brennan, B. P., De Nadai, A. S., Fitzgerald, K., Gruner, P., Grünblatt, E., Hirano, Y., Huyser, C., James, A., Koch, K., Kvale, G., Lazaro, L., Lochner, C., Marsh, R., Mataix-Cols, D., Morgado, P., Nakamae, T., Nakao, T., Narayanaswamy, J. C., Nurmi, E., Pittenger, C., Reddy, Y. J., Sato, J. R., Soreni, N., Stewart, S. E., Taylor, S. F., Tolin, D., Thomopoulos, S. I., Veltman, D. J., Venkatasubramanian, G., Walitza, S., Wang, Z., Thompson, P. M., Stein, D. J., & ENIGMA-OCD working (2022). An overview of the first 5 years of the ENIGMA obsessive–compulsive disorder working group: The power of worldwide collaboration. Human Brain Mapping, 43(1), 23-36. doi:10.1002/hbm.24972.
Abstract
Abstract Neuroimaging has played an important part in advancing our understanding of the neurobiology of obsessive?compulsive disorder (OCD). At the same time, neuroimaging studies of OCD have had notable limitations, including reliance on relatively small samples. International collaborative efforts to increase statistical power by combining samples from across sites have been bolstered by the ENIGMA consortium; this provides specific technical expertise for conducting multi-site analyses, as well as access to a collaborative community of neuroimaging scientists. In this article, we outline the background to, development of, and initial findings from ENIGMA's OCD working group, which currently consists of 47 samples from 34 institutes in 15 countries on 5 continents, with a total sample of 2,323 OCD patients and 2,325 healthy controls. Initial work has focused on studies of cortical thickness and subcortical volumes, structural connectivity, and brain lateralization in children, adolescents and adults with OCD, also including the study on the commonalities and distinctions across different neurodevelopment disorders. Additional work is ongoing, employing machine learning techniques. Findings to date have contributed to the development of neurobiological models of OCD, have provided an important model of global scientific collaboration, and have had a number of clinical implications. Importantly, our work has shed new light on questions about whether structural and functional alterations found in OCD reflect neurodevelopmental changes, effects of the disease process, or medication impacts. We conclude with a summary of ongoing work by ENIGMA-OCD, and a consideration of future directions for neuroimaging research on OCD within and beyond ENIGMA. -
Vessel, E. A., Ishizu, T., & Bignardi, G. (2022). Neural correlates of visual aesthetic appeal. In M. Skov, & M. Nadal (
Eds. ), The Routledge international handbook of neuroaesthetics (pp. 103-133). London: Routledge. -
Vogelezang, S., Bradfield, J. P., the Early Growth Genetics Consortium, Grant, S. F. A., Felix, J. F., & Jaddoe, V. W. V. (2022). Genetics of early-life head circumference and genetic correlations with neurological, psychiatric and cognitive outcomes. BMC Medical Genomics, 15: 124. doi:10.1186/s12920-022-01281-1.
Abstract
Background
Head circumference is associated with intelligence and tracks from childhood into adulthood.
Methods
We performed a genome-wide association study meta-analysis and follow-up of head circumference in a total of 29,192 participants between 6 and 30 months of age.
Results
Seven loci reached genome-wide significance in the combined discovery and replication analysis of which three loci near ARFGEF2, MYCL1, and TOP1, were novel. We observed positive genetic correlations for early-life head circumference with adult intracranial volume, years of schooling, childhood and adult intelligence, but not with adult psychiatric, neurological, or personality-related phenotypes.
Conclusions
The results of this study indicate that the biological processes underlying early-life head circumference overlap largely with those of adult head circumference. The associations of early-life head circumference with cognitive outcomes across the life course are partly explained by genetics. -
Wierenga, L. M., Doucet, G. E., Dima, D., Agartz, I., Aghajani, M., Akudjedu, T. N., Albajes-Eizagirre, A., Alnæs, D., Alpert, K. I., Andreassen, O. A., Anticevic, A., Asherson, P., Banaschewski, T., Bargallo, N., Baumeister, S., Baur-Streubel, R., Bertolino, A., Bonvino, A., Boomsma, D. I., Borgwardt, S. and 139 moreWierenga, L. M., Doucet, G. E., Dima, D., Agartz, I., Aghajani, M., Akudjedu, T. N., Albajes-Eizagirre, A., Alnæs, D., Alpert, K. I., Andreassen, O. A., Anticevic, A., Asherson, P., Banaschewski, T., Bargallo, N., Baumeister, S., Baur-Streubel, R., Bertolino, A., Bonvino, A., Boomsma, D. I., Borgwardt, S., Bourque, J., Den Braber, A., Brandeis, D., Breier, A., Brodaty, H., Brouwer, R. M., Buitelaar, J. K., Busatto, G. F., Calhoun, V. D., Canales-Rodríguez, E. J., Cannon, D. M., Caseras, X., Castellanos, F. X., Chaim-Avancini, T. M., Ching, C. R. K., Clark, V. P., Conrod, P. J., Conzelmann, A., Crivello, F., Davey, C. G., Dickie, E. W., Ehrlich, S., Van 't Ent, D., Fisher, S. E., Fouche, J.-P., Franke, B., Fuentes-Claramonte, P., De Geus, E. J. C., Di Giorgio, A., Glahn, D. C., Gotlib, I. H., Grabe, H. J., Gruber, O., Gruner, P., Gur, R. E., Gur, R. C., Gurholt, T. P., De Haan, L., Haatveit, B., Harrison, B. J., Hartman, C. A., Hatton, S. N., Heslenfeld, D. J., Van den Heuvel, O. A., Hickie, I. B., Hoekstra, P. J., Hohmann, S., Holmes, A. J., Hoogman, M., Hosten, N., Howells, F. M., Hulshoff Pol, H. E., Huyser, C., Jahanshad, N., James, A. C., Jiang, J., Jönsson, E. G., Joska, J. A., Kalnin, A. J., Karolinska Schizophrenia Project (KaSP) Consortium, Klein, M., Koenders, L., Kolskår, K. K., Krämer, B., Kuntsi, J., Lagopoulos, J., Lazaro, L., Lebedeva, I. S., Lee, P. H., Lochner, C., Machielsen, M. W. J., Maingault, S., Martin, N. G., Martínez-Zalacaín, I., Mataix-Cols, D., Mazoyer, B., McDonald, B. C., McDonald, C., McIntosh, A. M., McMahon, K. L., McPhilemy, G., Van der Meer, D., Menchón, J. M., Naaijen, J., Nyberg, L., Oosterlaan, J., Paloyelis, Y., Pauli, P., Pergola, G., Pomarol-Clotet, E., Portella, M. J., Radua, J., Reif, A., Richard, G., Roffman, J. L., Rosa, P. G. P., Sacchet, M. D., Sachdev, P. S., Salvador, R., Sarró, S., Satterthwaite, T. D., Saykin, A. J., Serpa, M. H., Sim, K., Simmons, A., Smoller, J. W., Sommer, I. E., Soriano-Mas, C., Stein, D. J., Strike, L. T., Szeszko, P. R., Temmingh, H. S., Thomopoulos, S. I., Tomyshev, A. S., Trollor, J. N., Uhlmann, A., Veer, I. M., Veltman, D. J., Voineskos, A., Völzke, H., Walter, H., Wang, L., Wang, Y., Weber, B., Wen, W., West, J. D., Westlye, L. T., Whalley, H. C., Williams, S. C. R., Wittfeld, K., Wolf, D. H., Wright, M. J., Yoncheva, Y. N., Zanetti, M. V., Ziegler, G. C., De Zubicaray, G. I., Thompson, P. M., Crone, E. A., Frangou, S., & Tamnes, C. K. (2022). Greater male than female variability in regional brain structure across the lifespan. Human Brain Mapping, 43(1), 470-499. doi:10.1002/hbm.25204.
Abstract
For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta‐Analysis) Consortium presents the largest‐ever mega‐analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1‐90 years old (47% females). We observed significant patterns of greater male than female between‐subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene‐environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex‐specific vulnerability to disorders.Additional information
supplemental figure 1 supplemental figure 2 supplemental figure 3 supplementary table 1 supplementary table 2 -
Ayub, Q., Yngvadottir, B., Chen, Y., Xue, Y., Hu, M., Vernes, S. C., Fisher, S. E., & Tyler-Smith, C. (2013). FOXP2 targets show evidence of positive selection in European populations. American Journal of Human Genetics, 92, 696-706. doi:10.1016/j.ajhg.2013.03.019.
Abstract
Forkhead box P2 (FOXP2) is a highly conserved transcription factor that has been implicated in human speech and language disorders and plays important roles in the plasticity of the developing brain. The pattern of nucleotide polymorphisms in FOXP2 in modern populations suggests that it has been the target of positive (Darwinian) selection during recent human evolution. In our study, we searched for evidence of selection that might have followed FOXP2 adaptations in modern humans. We examined whether or not putative FOXP2 targets identified by chromatin-immunoprecipitation genomic screening show evidence of positive selection. We developed an algorithm that, for any given gene list, systematically generates matched lists of control genes from the Ensembl database, collates summary statistics for three frequency-spectrum-based neutrality tests from the low-coverage resequencing data of the 1000 Genomes Project, and determines whether these statistics are significantly different between the given gene targets and the set of controls. Overall, there was strong evidence of selection of FOXP2 targets in Europeans, but not in the Han Chinese, Japanese, or Yoruba populations. Significant outliers included several genes linked to cellular movement, reproduction, development, and immune cell trafficking, and 13 of these constituted a significant network associated with cardiac arteriopathy. Strong signals of selection were observed for CNTNAP2 and RBFOX1, key neurally expressed genes that have been consistently identified as direct FOXP2 targets in multiple studies and that have themselves been associated with neurodevelopmental disorders involving language dysfunction.Additional information
Supplemental data for Ayub et al. 2013.pdf -
Baron-Cohen, S., Johnson, D., Asher, J. E., Wheelwright, S., Fisher, S. E., Gregersen, P. K., & Allison, C. (2013). Is synaesthesia more common in autism? Molecular Autism, 4(1): 40. doi:10.1186/2040-2392-4-40.
Abstract
BACKGROUND:
Synaesthesia is a neurodevelopmental condition in which a sensation in one modality triggers a perception in a second modality. Autism (shorthand for Autism Spectrum Conditions) is a neurodevelopmental condition involving social-communication disability alongside resistance to change and unusually narrow interests or activities. Whilst on the surface they appear distinct, they have been suggested to share common atypical neural connectivity.
METHODS:
In the present study, we carried out the first prevalence study of synaesthesia in autism to formally test whether these conditions are independent. After exclusions, 164 adults with autism and 97 controls completed a synaesthesia questionnaire, autism spectrum quotient, and test of genuineness-revised (ToG-R) online.
RESULTS:
The rate of synaesthesia in adults with autism was 18.9% (31 out of 164), almost three times greater than in controls (7.22%, 7 out of 97, P <0.05). ToG-R proved unsuitable for synaesthetes with autism.
CONCLUSIONS:
The significant increase in synaesthesia prevalence in autism suggests that the two conditions may share some common underlying mechanisms. Future research is needed to develop more feasible validation methods of synaesthesia in autism.Files private
Request files -
Brandler, W. M., Morris, A. P., Evans, D. M., Scerri, T. S., Kemp, J. P., Timpson, N. J., St Pourcain, B., Davey Smith, G., Ring, S. M., Stein, J., Monaco, A. P., Talcott, J. B., Fisher, S. E., Webber, C., & Paracchini, S. (2013). Common variants in left/right asymmetry genes and pathways are associated with relative hand skill. PLoS Genetics, 9(9): e1003751. doi:10.1371/journal.pgen.1003751.
Abstract
Humans display structural and functional asymmetries in brain organization, strikingly with respect to language and handedness. The molecular basis of these asymmetries is unknown. We report a genome-wide association study meta-analysis for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)] (n = 728). The most strongly associated variant, rs7182874 (P = 8.68×10−9), is located in PCSK6, further supporting an association we previously reported. We also confirmed the specificity of this association in individuals with RD; the same locus was not associated with relative hand skill in a general population cohort (n = 2,666). As PCSK6 is known to regulate NODAL in the development of left/right (LR) asymmetry in mice, we developed a novel approach to GWAS pathway analysis, using gene-set enrichment to test for an over-representation of highly associated variants within the orthologs of genes whose disruption in mice yields LR asymmetry phenotypes. Four out of 15 LR asymmetry phenotypes showed an over-representation (FDR≤5%). We replicated three of these phenotypes; situs inversus, heterotaxia, and double outlet right ventricle, in the general population cohort (FDR≤5%). Our findings lead us to propose that handedness is a polygenic trait controlled in part by the molecular mechanisms that establish LR body asymmetry early in development.Additional information
http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003751#s5 -
Capredon, M., Brucato, N., Tonasso, L., Choesmel-Cadamuro, V., Ricaut, F.-X., Razafindrazaka, H., Ratolojanahary, M. A., Randriamarolaza, L.-P., Champion, B., & Dugoujon, J.-M. (2013). Tracing Arab-Islamic Inheritance in Madagascar: Study of the Y-chromosome and Mitochondrial DNA in the Antemoro. PLoS One, 8(11): e80932. doi:10.1371/journal.pone.0080932.
Abstract
Madagascar is located at the crossroads of the Asian and African worlds and is therefore of particular interest for studies on human population migration. Within the large human diversity of the Great Island, we focused our study on a particular ethnic group, the Antemoro. Their culture presents an important Arab-Islamic influence, but the question of an Arab biological inheritance remains unresolved. We analyzed paternal (n=129) and maternal (n=135) lineages of this ethnic group. Although the majority of Antemoro genetic ancestry comes from sub-Saharan African and Southeast Asian gene pools, we observed in their paternal lineages two specific haplogroups (J1 and T1) linked to Middle Eastern origins. This inheritance was restricted to some Antemoro sub-groups. Statistical analyses tended to confirm significant Middle Eastern genetic contribution. This study gives a new perspective to the large human genetic diversity in MadagascarAdditional information
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10… -
Carrion Castillo, A., Franke, B., & Fisher, S. E. (2013). Molecular genetics of dyslexia: An overview. Dyslexia, 19(4), 214-240. doi:10.1002/dys.1464.
Abstract
Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may contribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies have moved from mapping potential risk loci, through identification of associated gene variants, to characterization of gene function in cellular and animal model systems. Work thus far has highlighted some intriguing mechanistic pathways, such as neuronal migration, axon guidance, and ciliary biology, but it is clear that we still have much to learn about the molecular networks that are involved. We end the review by highlighting the past, present, and future contributions of the Dutch Dyslexia Programme to studies of genetic factors. In particular, we emphasize the importance of relating genetic information to intermediate neurobiological measures, as well as the value of incorporating longitudinal and developmental data into molecular designs -
Dediu, D., Cysouw, M., Levinson, S. C., Baronchelli, A., Christiansen, M. H., Croft, W., Evans, N., Garrod, S., Gray, R., Kandler, A., & Lieven, E. (2013). Cultural evolution of language. In P. J. Richerson, & M. H. Christiansen (
Eds. ), Cultural evolution: Society, technology, language, and religion. Strüngmann Forum Reports, vol. 12 (pp. 303-332). Cambridge, Mass: MIT Press.Abstract
This chapter argues that an evolutionary cultural approach to language not only has already proven fruitful, but it probably holds the key to understand many puzzling aspects of language, its change and origins. The chapter begins by highlighting several still common misconceptions about language that might seem to call into question a cultural evolutionary approach. It explores the antiquity of language and sketches a general evolutionary approach discussing the aspects of function, fi tness, replication, and selection, as well the relevant units of linguistic evolution. In this context, the chapter looks at some fundamental aspects of linguistic diversity such as the nature of the design space, the mechanisms generating it, and the shape and fabric of language. Given that biology is another evolutionary system, its complex coevolution with language needs to be understood in order to have a proper theory of language. Throughout the chapter, various challenges are identifi ed and discussed, sketching promising directions for future research. The chapter ends by listing the necessary data, methods, and theoretical developments required for a grounded evolutionary approach to language. -
Dediu, D. (2013). Genes: Interactions with language on three levels — Inter-individual variation, historical correlations and genetic biasing. In P.-M. Binder, & K. Smith (
Eds. ), The language phenomenon: Human communication from milliseconds to millennia (pp. 139-161). Berlin: Springer. doi:10.1007/978-3-642-36086-2_7.Abstract
The complex inter-relationships between genetics and linguistics encompass all four scales highlighted by the contributions to this book and, together with cultural transmission, the genetics of language holds the promise to offer a unitary understanding of this fascinating phenomenon. There are inter-individual differences in genetic makeup which contribute to the obvious fact that we are not identical in the way we understand and use language and, by studying them, we will be able to both better treat and enhance ourselves. There are correlations between the genetic configuration of human groups and their languages, reflecting the historical processes shaping them, and there also seem to exist genes which can influence some characteristics of language, biasing it towards or against certain states by altering the way language is transmitted across generations. Besides the joys of pure knowledge, the understanding of these three aspects of genetics relevant to language will potentially trigger advances in medicine, linguistics, psychology or the understanding of our own past and, last but not least, a profound change in the way we regard one of the emblems of being human: our capacity for language. -
Dediu, D., & Levinson, S. C. (2013). On the antiquity of language: The reinterpretation of Neandertal linguistic capacities and its consequences. Frontiers in Language Sciences, 4: 397. doi:10.3389/fpsyg.2013.00397.
Abstract
It is usually assumed that modern language is a recent phenomenon, coinciding with the emergence of modern humans themselves. Many assume as well that this is the result of a single, sudden mutation giving rise to the full “modern package”. However, we argue here that recognizably modern language is likely an ancient feature of our genus pre-dating at least the common ancestor of modern humans and Neandertals about half a million years ago. To this end, we adduce a broad range of evidence from linguistics, genetics, palaeontology and archaeology clearly suggesting that Neandertals shared with us something like modern speech and language. This reassessment of the antiquity of modern language, from the usually quoted 50,000-100,000 years to half a million years, has profound consequences for our understanding of our own evolution in general and especially for the sciences of speech and language. As such, it argues against a saltationist scenario for the evolution of language, and towards a gradual process of culture-gene co-evolution extending to the present day. Another consequence is that the present-day linguistic diversity might better reflect the properties of the design space for language and not just the vagaries of history, and could also contain traces of the languages spoken by other human forms such as the Neandertals. -
Dediu, D., & Cysouw, M. A. (2013). Some structural aspects of language are more stable than others: A comparison of seven methods. PLoS One, 8: e55009. doi:10.1371/journal.pone.0055009.
Abstract
Understanding the patterns and causes of differential structural stability is an area of major interest for the study of language change and evolution. It is still debated whether structural features have intrinsic stabilities across language families and geographic areas, or if the processes governing their rate of change are completely dependent upon the specific context of a given language or language family. We conducted an extensive literature review and selected seven different approaches to conceptualising and estimating the stability of structural linguistic features, aiming at comparing them using the same dataset, the World Atlas of Language Structures. We found that, despite profound conceptual and empirical differences between these methods, they tend to agree in classifying some structural linguistic features as being more stable than others. This suggests that there are intrinsic properties of such structural features influencing their stability across methods, language families and geographic areas. This finding is a major step towards understanding the nature of structural linguistic features and their interaction with idiosyncratic, lineage- and area-specific factors during language change and evolution. -
Deriziotis, P., & Fisher, S. E. (2013). Neurogenomics of speech and language disorders: The road ahead. Genome Biology, 14: 204. doi:10.1186/gb-2013-14-4-204.
Abstract
Next-generation sequencing is set to transform the discovery of genes underlying neurodevelopmental disorders, and so off er important insights into the biological bases of spoken language. Success will depend on functional assessments in neuronal cell lines, animal models and humans themselves. -
Fisher, S. E. (2013). Building bridges between genes, brains and language. In J. J. Bolhuis, & M. Everaert (
Eds. ), Birdsong, speech and language: Exploring the evolution of mind and brain (pp. 425-454). Cambridge, Mass: MIT Press. -
Fisher, S. E., & Ridley, M. (2013). Culture, genes, and the human revolution. Science, 340(6135), 929-930. doi:10.1126/science.1236171.
Abstract
State-of-the-art DNA sequencing is providing ever more detailed insights into the genomes of humans, extant apes, and even extinct hominins (1–3), offering unprecedented opportunities to uncover the molecular variants that make us human. A common assumption is that the emergence of behaviorally modern humans after 200,000 years ago required—and followed—a specific biological change triggered by one or more genetic mutations. For example, Klein has argued that the dawn of human culture stemmed from a single genetic change that “fostered the uniquely modern ability to adapt to a remarkable range of natural and social circumstance” (4). But are evolutionary changes in our genome a cause or a consequence of cultural innovation (see the figure)?Files private
Request files -
Gialluisi, A., Incollu, S., Pippucci, T., Lepori, M. B., Zappu, A., Loudianos, G., & Romeo, G. (2013). The homozygosity index (HI) approach reveals high allele frequency for Wilson disease in the Sardinian population. European Journal of Human Genetics, 21, 1308-1311. doi:10.1038/ejhg.2013.43.
Abstract
Wilson disease (WD) is an autosomal recessive disorder resulting in pathological progressive copper accumulation in liver and other tissues. The worldwide prevalence (P) is about 30/million, while in Sardinia it is in the order of 1/10 000. However, all of these estimates are likely to suffer from an underdiagnosis bias. Indeed, a recent molecular neonatal screening in Sardinia reported a WD prevalence of 1:2707. In this study, we used a new approach that makes it possible to estimate the allelic frequency (q) of an autosomal recessive disorder if one knows the proportion between homozygous and compound heterozygous patients (the homozygosity index or HI) and the inbreeding coefficient (F) in a sample of affected individuals. We applied the method to a set of 178 Sardinian individuals (3 of whom born to consanguineous parents), each with a clinical and molecular diagnosis of WD. Taking into account the geographical provenance of the parents of every patient within Sardinia (to make F computation more precise), we obtained a q=0.0191 (F=7.8 × 10-4, HI=0.476) and a corresponding prevalence P=1:2732. This result confirms that the prevalence of WD is largely underestimated in Sardinia. On the other hand, the general reliability and applicability of the HI approach to other autosomal recessive disorders is confirmed, especially if one is interested in the genetic epidemiology of populations with high frequency of consanguineous marriages.Additional information
http://www.nature.com/ejhg/journal/v21/n11/suppinfo/ejhg201343s1.html -
Gialluisi, A., Dediu, D., Francks, C., & Fisher, S. E. (2013). Persistence and transmission of recessive deafness and sign language: New insights from village sign languages. European Journal of Human Genetics, 21, 894-896. doi:10.1038/ejhg.2012.292.
Abstract
First paragraph: The study of the transmission of sign languages can give novel insights into the transmission of spoken languages1 and, more generally, into gene–culture coevolution. Over the years, several papers related to the persistence of sign language have been
reported.2–6 All of these studies have emphasized the role of assortative (non-random) mating by deafness state (ie, a tendency for deaf individuals to partner together) for increasing the frequency of recessive deafness, and hence for the persistence of sign language in a population. -
Graham, S. A., & Fisher, S. E. (2013). Decoding the genetics of speech and language. Current Opinion in Neurobiology, 23, 43-51. doi:10.1016/j.conb.2012.11.006.
Abstract
Researchers are beginning to uncover the neurogenetic pathways that underlie our unparalleled capacity for spoken language. Initial clues come from identification of genetic risk factors implicated in developmental language disorders. The underlying genetic architecture is complex, involving a range of molecular mechanisms. For example, rare protein-coding mutations of the FOXP2 transcription factor cause severe problems with sequencing of speech sounds, while common genetic risk variants of small effect size in genes like CNTNAP2, ATP2C2 and CMIP are associated with typical forms of language impairment. In this article, we describe how investigations of these and other candidate genes, in humans, animals and cellular models, are unravelling the connections between genes and cognition. This depends on interdisciplinary research at multiple levels, from determining molecular interactions and functional roles in neural cell-biology all the way through to effects on brain structure and activity. -
Gregersen, P. K., Kowalsky, E., Lee, A., Baron-Cohen, S., Fisher, S. E., Asher, J. E., Ballard, D., Freudenberg, J., & Li, W. (2013). Absolute pitch exhibits phenotypic and genetic overlap with synesthesia. Human Molecular Genetics, 22, 2097-2104. doi:10.1093/hmg/ddt059.
Abstract
Absolute pitch and synesthesia are two uncommon cognitive traits that reflect increased neuronal connectivity and have been anecdotally reported to occur together in a same individual. Here we systematically evaluate the occurrence of syesthesia in a population of 768 subjects with documented absolute pitch. Out of these 768 subjects, 151(20.1%) reported synesthesia, most commonly with color. These self-reports of synesthesia were validated in a subset of 21 study subjects using an established methodology. We further carried out combined linkage analysis of 53 multiplex families with absolute pitch and 36 multiplex families with synesthesia. We observed a peak NPL LOD=4.68 on chromosome 6q, as well as evidence of linkage on chromosome 2 using a dominant model. These data establish the close phenotypic and genetic relationship between absolute pitch and synesthesia. The chromosome 6 linkage region contains 73 genes; several leading candidate genes involved in neurodevelopment were investigated by exon resequencing. However, further studies will be required to definitively establish the identity of the causative gene(s) in the region.Additional information
Supplementary Figure 1.pdf Supplementary Figure 2.pdf Supplementary Table 1.pdf -
Ladd, D. R., & Dediu, D. (2013). Genes and linguistic tone. In H. Pashler (
Ed. ), Encyclopedia of the mind (pp. 372-373). London: Sage Publications.Abstract
It is usually assumed that the language spoken by a human community is independent of the community's genetic makeup, an assumption supported by an overwhelming amount of evidence. However, the possibility that language is influenced by its speakers' genes cannot be ruled out a priori, and a recently discovered correlation between the geographic distribution of tone languages and two human genes seems to point to a genetically influenced bias affecting language. This entry describes this specific correlation and highlights its major implications. Voice pitch has a variety of communicative functions. Some of these are probably universal, such as conveying information about the speaker's sex, age, and emotional state. In many languages, including the European languages, voice pitch also conveys certain sentence-level meanings such as signaling that an utterance is a question or an exclamation; these uses of pitch are known as intonation. Some languages, however, known as tone languages, nian ... -
Ladd, D. R., Turnbull, R., Browne, C., Caldwell-Harris, C., Ganushchak, L. Y., Swoboda, K., Woodfield, V., & Dediu, D. (2013). Patterns of individual differences in the perception of missing-fundamental tones. Journal of Experimental Psychology: Human Perception and Performance, 39(5), 1386-1397. doi:10.1037/a0031261.
Abstract
Recent experimental findings suggest stable individual differences in the perception of auditory stimuli lacking energy at the fundamental frequency (F0), here called missing fundamental (MF) tones. Specifically, some individuals readily identify the pitch of such tones with the missing F0 ("F0 listeners"), and some base their judgment on the frequency of the partials that make up the tones ("spectral listeners"). However, the diversity of goals and methods in recent research makes it difficult to draw clear conclusions about individual differences. The first purpose of this article is to discuss the influence of methodological choices on listeners' responses. The second goal is to report findings on individual differences in our own studies of the MF phenomenon. In several experiments, participants judged the direction of pitch change in stimuli composed of two MF tones, constructed so as to reveal whether the pitch percept was based on the MF or the partials. The reported difference between F0 listeners and spectral listeners was replicated, but other stable patterns of responses were also observed. Test-retest reliability is high. We conclude that there are genuine, stable individual differences underlying the diverse findings, but also that there are more than two general types of listeners, and that stimulus variables strongly affect some listeners' responses. This suggests that it is generally misleading to classify individuals as "F0 listeners" or "spectral listeners." It may be more accurate to speak of two modes of perception ("F0 listening" and "spectral listening"), both of which are available to many listeners. The individual differences lie in what conditions the choice between the two modes.Additional information
http://dx.doi.org/10.1037/a0031261.supp -
Levinson, S. C., & Dediu, D. (2013). The interplay of genetic and cultural factors in ongoing language evolution. In P. J. Richerson, & M. H. Christiansen (
Eds. ), Cultural evolution: Society, technology, language, and religion. Strüngmann Forum Reports, vol. 12 (pp. 219-232). Cambridge, Mass: MIT Press. -
Newbury, D. F., Mari, F., Akha, E. S., MacDermot, K. D., Canitano, R., Monaco, A. P., Taylor, J. C., Renieri, A., Fisher, S. E., & Knight, S. J. L. (2013). Dual copy number variants involving 16p11 and 6q22 in a case of childhood apraxia of speech and pervasive developmental disorder. European Journal of Human Genetics, 21, 361-365. doi:10.1038/ejhg.2012.166.
Abstract
In this issue, Raca et al1 present two cases of childhood apraxia of speech (CAS) arising from microdeletions of chromosome 16p11.2. They propose that comprehensive phenotypic profiling may assist in the delineation and classification of such cases. To complement this study, we would like to report on a third, unrelated, child who presents with CAS and a chromosome 16p11.2 heterozygous deletion. We use genetic data from this child and his family to illustrate how comprehensive genetic profiling may also assist in the characterisation of 16p11.2 microdeletion syndrome.Additional information
Supplementary Table 1 _Newbury_EJHG_2012.doc -
Stephens, S., Hartz, S., Hoft, N., Saccone, N., Corley, R., Hewitt, J., Hopfer, C., Breslau, N., Coon, H., Chen, X., Ducci, F., Dueker, N., Franceschini, N., Frank, J., Han, Y., Hansel, N., Jiang, C., Korhonen, T., Lind, P., Liu, J. and 105 moreStephens, S., Hartz, S., Hoft, N., Saccone, N., Corley, R., Hewitt, J., Hopfer, C., Breslau, N., Coon, H., Chen, X., Ducci, F., Dueker, N., Franceschini, N., Frank, J., Han, Y., Hansel, N., Jiang, C., Korhonen, T., Lind, P., Liu, J., Michel, M., Lyytikäinen, L.-P., Shaffer, J., Short, S., Sun, J., Teumer, A., Thompson, J., Vogelzangs, N., Vink, J., Wenzlaff, A., Wheeler, W., Yang, B.-Z., Aggen, S., Balmforth, A., Baumesiter, S., Beaty, T., Benjamin, D., Bergen, A., Broms, U., Cesarini, D., Chatterjee, N., Chen, J., Cheng, Y.-C., Cichon, S., Couper, D., Cucca, F., Dick, D., Foround, T., Furberg, H., Giegling, I., Gillespie, N., Gu, F.,.Hall, A., Hällfors, J., Han, S., Hartmann, A., Heikkilä, K., Hickie, I., Hottenga, J., Jousilahti, P., Kaakinen, M., Kähönen, M., Koellinger, P., Kittner, S., Konte, B., Landi, M.-T., Laatikainen, T., Leppert, M., Levy, S., Mathias, R., McNeil, D., Medlund, S., Montgomery, G., Murray, T., Nauck, M., North, K., Paré, P., Pergadia, M., Ruczinski, I., Salomaa, V., Viikari, J., Willemsen, G., Barnes, K., Boerwinkle, E., Boomsma, D., Caporaso, N., Edenberg, H., Francks, C., Gelernter, J., Grabe, H., Hops, H., Jarvelin, M.-R., Johannesson, M., Kendler, K., Lehtimäki, T., Magnusson, P., Marazita, M., Marchini, J., Mitchell, B., Nöthen, M., Penninx, B., Raitakari, O., Rietschel, M., Rujescu, D., Samani, N., Schwartz, A., Shete, S., Spitz, M., Swan, G., Völzke, H., Veijola, J., Wei, Q., Amos, C., Canon, D., Grucza, R., Hatsukami, D., Heath, A., Johnson, E., Kaprio, J., Madden, P., Martin, N., Stevens, V., Weiss, R., Kraft, P., Bierut, L., & Ehringer, M. (2013). Distinct Loci in the CHRNA5/CHRNA3/CHRNB4 Gene Cluster are Associated with Onset of Regular Smoking. Genetic Epidemiology, 37, 846-859. doi:10.1002/gepi.21760.
Abstract
Neuronal nicotinic acetylcholine receptor (nAChR) genes (CHRNA5/CHRNA3/CHRNB4) have been reproducibly associated with nicotine dependence, smoking behaviors, and lung cancer risk. Of the few reports that have focused on early smoking behaviors, association results have been mixed. This meta-analysis examines early smoking phenotypes and SNPs in the gene cluster to determine: (1) whether the most robust association signal in this region (rs16969968) for other smoking behaviors is also associated with early behaviors, and/or (2) if additional statistically independent signals are important in early smoking. We focused on two phenotypes: age of tobacco initiation (AOI) and age of first regular tobacco use (AOS). This study included 56,034 subjects (41 groups) spanning nine countries and evaluated five SNPs including rs1948, rs16969968, rs578776, rs588765, and rs684513. Each dataset was analyzed using a centrally generated script. Meta-analyses were conducted from summary statistics. AOS yielded significant associations with SNPs rs578776 (beta = 0.02, P = 0.004), rs1948 (beta = 0.023, P = 0.018), and rs684513 (beta = 0.032, P = 0.017), indicating protective effects. There were no significant associations for the AOI phenotype. Importantly, rs16969968, the most replicated signal in this region for nicotine dependence, cigarettes per day, and cotinine levels, was not associated with AOI (P = 0.59) or AOS (P = 0.92). These results provide important insight into the complexity of smoking behavior phenotypes, and suggest that association signals in the CHRNA5/A3/B4 gene cluster affecting early smoking behaviors may be different from those affecting the mature nicotine dependence phenotypeAdditional information
http://onlinelibrary.wiley.com/doi/10.1002/gepi.21760/suppinfoFiles private
Request files -
Vernes, S. C., & Fisher, S. E. (2013). Genetic pathways implicated in speech and language. In S. Helekar (
Ed. ), Animal models of speech and language disorders (pp. 13-40). New York: Springer. doi:10.1007/978-1-4614-8400-4_2.Abstract
Disorders of speech and language are highly heritable, providing strong
support for a genetic basis. However, the underlying genetic architecture is complex,
involving multiple risk factors. This chapter begins by discussing genetic loci associated
with common multifactorial language-related impairments and goes on to
detail the only gene (known as FOXP2) to be directly implicated in a rare monogenic
speech and language disorder. Although FOXP2 was initially uncovered in
humans, model systems have been invaluable in progressing our understanding of
the function of this gene and its associated pathways in language-related areas of the
brain. Research in species from mouse to songbird has revealed effects of this gene
on relevant behaviours including acquisition of motor skills and learned vocalisations
and demonstrated a role for Foxp2 in neuronal connectivity and signalling,
particularly in the striatum. Animal models have also facilitated the identification of
wider neurogenetic networks thought to be involved in language development and
disorder and allowed the investigation of new candidate genes for disorders involving
language, such as CNTNAP2 and FOXP1. Ongoing work in animal models promises
to yield new insights into the genetic and neural mechanisms underlying human
speech and language -
Walters, J., Rujescu, D., Franke, B., Giegling, I., Vasquez, A., Hargreaves, A., Russo, G., Morris, D., Hoogman, M., Da Costa, A., Moskvina, V., Fernandez, G., Gill, M., Corvin, A., O'Donovan, M., Donohoe, G., & Owen, M. (2013). The role of the major histocompatibility complex region in cognition and brain structure: A schizophrenia GWAS follow-up. American Journal of Psychiatry, 170, 877-885. doi:10.1176/appi.ajp.2013.12020226.
Abstract
Objective The authors investigated the effects of recently identified genome-wide significant schizophrenia genetic risk variants on cognition and brain structure. Method A panel of six single-nucleotide polymorphisms (SNPs) was selected to represent genome-wide significant loci from three recent genome-wide association studies (GWAS) for schizophrenia and was tested for association with cognitive measures in 346 patients with schizophrenia and 2,342 healthy comparison subjects. Nominally significant results were evaluated for replication in an independent case-control sample. For SNPs showing evidence of association with cognition, associations with brain structural volumes were investigated in a large independent healthy comparison sample. Results Five of the six SNPs showed no significant association with any cognitive measure. One marker in the major histocompatibility complex (MHC) region, rs6904071, showed independent, replicated evidence of association with delayed episodic memory and was significant when both samples were combined. In the combined sample of up to 3,100 individuals, this SNP was associated with widespread effects across cognitive domains, although these additional associations were no longer significant after adjusting for delayed episodic memory. In the large independent structural imaging sample, the same SNP was also associated with decreased hippocampal volume. Conclusions The authors identified a SNP in the MHC region that was associated with cognitive performance in patients with schizophrenia and healthy comparison subjects. This SNP, rs6904071, showed a replicated association with episodic memory and hippocampal volume. These findings implicate the MHC region in hippocampal structure and functioning, consistent with the role of MHC proteins in synaptic development and function. Follow-up of these results has the potential to provide insights into the pathophysiology of schizophrenia and cognition.Additional information
Hoogman_2013_JourAmePsy.supp.pdf
Share this page