Publications
Displaying 1 - 100 of 102
-
Ahn, D., & Ferreira, V. S. (2024). Shared vs separate structural representations: Evidence from cumulative cross-language structural priming. Quarterly Journal of Experimental Psychology, 77(1), 174-190. doi:10.1177/17470218231160942.
Abstract
How do bilingual speakers represent the information that guides the assembly of words into sentences for their two languages? The shared-syntax account argues that bilinguals have a single, shared representation of the sentence structures that exist in both languages. Structural priming has been shown to be equal within and across languages, providing support for the shared-syntax account. However, equivalent levels of structural priming within and across languages could be observed even if structural representations are separate and connected, due to frequent switches between languages, which is a property of standard structural priming paradigms. Here, we investigated whether cumulative structural priming (i.e., structural priming across blocks rather than trial-by-trial), which does not involve frequent switches between languages, also shows equivalent levels of structural priming within- and cross-languages. Mixed results point towards a possibility that cumulative structural priming can be more persistent within- compared to cross-languages, suggesting a separate-and-connected account of bilingual structural representations. We discuss these results in terms of the current literature on bilingual structural representations and highlight the value of diversity in paradigms and less-studied languages. -
Ahn, D., Ferreira, V. S., & Gollan, T. H. (2024). Structural representation in the native language after extended second-language immersion: Evidence from acceptability judgment and memory-recall. Bilingualism: Language and Cognition, 27(5), 792-809. doi:10.1017/S1366728923000950.
Abstract
Knowing the sentence structures (i.e., information that guides the assembly of words into sentences) is crucial in language knowledge. This knowledge must be stable for successful communication, but when learning another language that uses different structures, speakers must adjust their structural knowledge. Here, we examine how newly acquired second language (L2) knowledge influences first language (L1) structure knowledge. We compared two groups of Korean speakers: Korean-immersed speakers living in Korea (with little English exposure) versus English-immersed speakers who acquired English late and were living in the US (with more English exposure). We used acceptability judgment and sentence production tasks on Korean sentences in English and Korean word orders. Results suggest that acceptability and structural usage in L1 change after exposure to L2, but not in a way that matches L2 structures. Instead, L2 exposure might lead to increased difficulties in the selection and retrieval of word orders while using L1. -
Arana, S., Hagoort, P., Schoffelen, J.-M., & Rabovsky, M. (2024). Perceived similarity as a window into representations of integrated sentence meaning. Behavior Research Methods, 56(3), 2675-2691. doi:10.3758/s13428-023-02129-x.
Abstract
When perceiving the world around us, we are constantly integrating pieces of information. The integrated experience consists of more than just the sum of its parts. For example, visual scenes are defined by a collection of objects as well as the spatial relations amongst them and sentence meaning is computed based on individual word semantic but also syntactic configuration. Having quantitative models of such integrated representations can help evaluate cognitive models of both language and scene perception. Here, we focus on language, and use a behavioral measure of perceived similarity as an approximation of integrated meaning representations. We collected similarity judgments of 200 subjects rating nouns or transitive sentences through an online multiple arrangement task. We find that perceived similarity between sentences is most strongly modulated by the semantic action category of the main verb. In addition, we show how non-negative matrix factorization of similarity judgment data can reveal multiple underlying dimensions reflecting both semantic as well as relational role information. Finally, we provide an example of how similarity judgments on sentence stimuli can serve as a point of comparison for artificial neural networks models (ANNs) by comparing our behavioral data against sentence similarity extracted from three state-of-the-art ANNs. Overall, our method combining the multiple arrangement task on sentence stimuli with matrix factorization can capture relational information emerging from integration of multiple words in a sentence even in the presence of strong focus on the verb. -
Arana, S., Pesnot Lerousseau, J., & Hagoort, P. (2024). Deep learning models to study sentence comprehension in the human brain. Language, Cognition and Neuroscience, 39(8), 972-990. doi:10.1080/23273798.2023.2198245.
Abstract
Recent artificial neural networks that process natural language achieve unprecedented performance in tasks requiring sentence-level understanding. As such, they could be interesting models of the integration of linguistic information in the human brain. We review works that compare these artificial language models with human brain activity and we assess the extent to which this approach has improved our understanding of the neural processes involved in natural language comprehension. Two main results emerge. First, the neural representation of word meaning aligns with the context-dependent, dense word vectors used by the artificial neural networks. Second, the processing hierarchy that emerges within artificial neural networks broadly matches the brain, but is surprisingly inconsistent across studies. We discuss current challenges in establishing artificial neural networks as process models of natural language comprehension. We suggest exploiting the highly structured representational geometry of artificial neural networks when mapping representations to brain data.Additional information
link to preprint -
Baths, V., Jartarkar, M., Sood, S., Lewis, A. G., Ostarek, M., & Huettig, F. (2024). Testing the involvement of low-level visual representations during spoken word processing with non-Western students and meditators practicing Sudarshan Kriya Yoga. Brain Research, 1838: 148993. doi:10.1016/j.brainres.2024.148993.
Abstract
Previous studies, using the Continuous Flash Suppression (CFS) paradigm, observed that (Western) university students are better able to detect otherwise invisible pictures of objects when they are presented with the corresponding spoken word shortly before the picture appears. Here we attempted to replicate this effect with non-Western university students in Goa (India). A second aim was to explore the performance of (non-Western) meditators practicing Sudarshan Kriya Yoga in Goa in the same task. Some previous literature suggests that meditators may excel in some tasks that tap visual attention, for example by exercising better endogenous and exogenous control of visual awareness than non-meditators. The present study replicated the finding that congruent spoken cue words lead to significantly higher detection sensitivity than incongruent cue words in non-Western university students. Our exploratory meditator group also showed this detection effect but both frequentist and Bayesian analyses suggest that the practice of meditation did not modulate it. Overall, our results provide further support for the notion that spoken words can activate low-level category-specific visual features that boost the basic capacity to detect the presence of a visual stimulus that has those features. Further research is required to conclusively test whether meditation can modulate visual detection abilities in CFS and similar tasks. -
Bazzi, L., Brouwer, S., Khan, Z. N., Verdonschot, R. G., & Foucart, A. (2024). War feels less horrid in a foreign accent: Exploring the impact of the foreign accent on emotionality. Frontiers in Language Sciences, 3: 1357828. doi:10.3389/flang.2024.1357828.
Abstract
Introduction: The processing of a foreign accent is known to increase cognitive load for the native listener, establish psychological distance with the foreign-accented speaker, and even influence decision-making. Similarly, research in the field of emotional processing indicates that a foreign accent may impact the native listener's emotionality. Taking these aspects into consideration, the current study aimed to confirm the hypothesis that a foreign accent, compared to a native accent, significantly affects the processing of affective-laden words.
Methods: In order to test this hypothesis, native Spanish speakers participated in an online experiment in which they rated on a Likert scale the valence and arousal of positive, neutral and negative words presented in native and foreign accents.
Results: Results confirm a foreign accent effect on emotional processing whereby positively valenced words are perceived as less positive and negatively valenced words as less negative when processed in a foreign accent compared to a native accent. Moreover, the arousal provoked by emotion words is lesser when words are processed in a foreign than a native accent.
Discussion: We propose possible, not mutually exclusive, explanations for the effect based on linguistic fluency, language attitudes and the linguistic context of language acquisition. Although further research is needed to confirm them, these explanations may be relevant for models of language comprehension and language learning. The observation of a reduction in emotionality resulting from a foreign accent is important for society as important decisions are made by representatives with diverse language and accent backgrounds. Our findings demonstrate that the choice of the language, which entails speaking in a native or a foreign accent, can be crucial when discussing topics such as the consequences of wars, pandemics, or natural disasters on human beings.Additional information
data sheet -
Bulut, T., & Temiz, G. (2024). Cortical organization of action and object naming in Turkish: A transcranial magnetic stimulation study. Psikoloji Çalışmaları / Studies in Psychology, 44(2), 235-254. doi:10.26650/SP2023-1279982.
Abstract
It is controversial whether the linguistic distinction between nouns and verbs is reflected in the cortical organization of the lexicon. Neuropsychological studies of aphasia and neuroimaging studies have associated the left prefrontal cortex, particularly Broca’s area, with verbs/actions, and the left posterior temporal cortex, particularly Wernicke’s area, with nouns/objects. However, more recent research has revealed that evidence for this distinction is inconsistent. Against this background, the present study employed low-frequency repetitive transcranial magnetic stimulation (rTMS) to investigate the dissociation of action and object naming in Broca’s and Wernicke’s areas in Turkish. Thirty-six healthy adult participants took part in the study. In two experiments, low-frequency (1 Hz) inhibitory rTMS was administered at 100% of motor threshold for 10 minutes to suppress the activity of the left prefrontal cortex spanning Broca’s area or the left posterior temporal cortex spanning Wernicke’s area. A picture naming task involving objects and actions was employed before and after the stimulation sessions to examine any pre- to post-stimulation changes in naming latencies. Linear mixed models that included various psycholinguistic covariates including frequency, visual and conceptual complexity, age of acquisition, name agreement and word length were fitted to the data. The findings showed that conceptual complexity, age of acquisition of the target word and name agreement had a significant effect on naming latencies, which was consistent across both experiments. Critically, the findings significantly associated Broca’s area, but not Wernicke’s area, in the distinction between naming objects and actions. Suppression of Broca’s area led to a significant and robust increase in naming latencies (or slowdown) for objects and a marginally significant, but not robust, reduction in naming latencies (or speedup) for actions. The findings suggest that actions and objects in Turkish can be dissociated in Broca’s area. -
Bulut, T., & Hagoort, P. (2024). Contributions of the left and right thalami to language: A meta-analytic approach. Brain Structure & Function, 229, 2149-2166. doi:10.1007/s00429-024-02795-3.
Abstract
Background: Despite a pervasive cortico-centric view in cognitive neuroscience, subcortical structures including the thalamus have been shown to be increasingly involved in higher cognitive functions. Previous structural and functional imaging studies demonstrated cortico-thalamo-cortical loops which may support various cognitive functions including language. However, large-scale functional connectivity of the thalamus during language tasks has not been examined before. Methods: The present study employed meta-analytic connectivity modeling to identify language-related coactivation patterns of the left and right thalami. The left and right thalami were used as regions of interest to search the BrainMap functional database for neuroimaging experiments with healthy participants reporting language-related activations in each region of interest. Activation likelihood estimation analyses were then carried out on the foci extracted from the identified studies to estimate functional convergence for each thalamus. A functional decoding analysis based on the same database was conducted to characterize thalamic contributions to different language functions. Results: The results revealed bilateral frontotemporal and bilateral subcortical (basal ganglia) coactivation patterns for both the left and right thalami, and also right cerebellar coactivations for the left thalamus, during language processing. In light of previous empirical studies and theoretical frameworks, the present connectivity and functional decoding findings suggest that cortico-subcortical-cerebellar-cortical loops modulate and fine-tune information transfer within the bilateral frontotemporal cortices during language processing, especially during production and semantic operations, but also other language (e.g., syntax, phonology) and cognitive operations (e.g., attention, cognitive control). Conclusion: The current findings show that the language-relevant network extends beyond the classical left perisylvian cortices and spans bilateral cortical, bilateral subcortical (bilateral thalamus, bilateral basal ganglia) and right cerebellar regions.Additional information
supplementary information -
Fitz, H., Hagoort, P., & Petersson, K. M. (2024). Neurobiological causal models of language processing. Neurobiology of Language, 5(1), 225-247. doi:10.1162/nol_a_00133.
Abstract
The language faculty is physically realized in the neurobiological infrastructure of the human brain. Despite significant efforts, an integrated understanding of this system remains a formidable challenge. What is missing from most theoretical accounts is a specification of the neural mechanisms that implement language function. Computational models that have been put forward generally lack an explicit neurobiological foundation. We propose a neurobiologically informed causal modeling approach which offers a framework for how to bridge this gap. A neurobiological causal model is a mechanistic description of language processing that is grounded in, and constrained by, the characteristics of the neurobiological substrate. It intends to model the generators of language behavior at the level of implementational causality. We describe key features and neurobiological component parts from which causal models can be built and provide guidelines on how to implement them in model simulations. Then we outline how this approach can shed new light on the core computational machinery for language, the long-term storage of words in the mental lexicon and combinatorial processing in sentence comprehension. In contrast to cognitive theories of behavior, causal models are formulated in the “machine language” of neurobiology which is universal to human cognition. We argue that neurobiological causal modeling should be pursued in addition to existing approaches. Eventually, this approach will allow us to develop an explicit computational neurobiology of language. -
Forkel, S. J., & Hagoort, P. (2024). Redefining language networks: Connectivity beyond localised regions. Brain Structure & Function, 229, 2073-2078. doi:10.1007/s00429-024-02859-4.
-
Giglio, L., Ostarek, M., Sharoh, D., & Hagoort, P. (2024). Diverging neural dynamics for syntactic structure building in naturalistic speaking and listening. Proceedings of the National Academy of Sciences of the United States of America, 121(11): e2310766121. doi:10.1073/pnas.2310766121.
Abstract
The neural correlates of sentence production have been mostly studied with constraining task paradigms that introduce artificial task effects. In this study, we aimed to gain a better understanding of syntactic processing in spontaneous production vs. naturalistic comprehension. We extracted word-by-word metrics of phrase-structure building with top-down and bottom-up parsers that make different hypotheses about the timing of structure building. In comprehension, structure building proceeded in an integratory fashion and led to an increase in activity in posterior temporal and inferior frontal areas. In production, structure building was anticipatory and predicted an increase in activity in the inferior frontal gyrus. Newly developed production-specific parsers highlighted the anticipatory and incremental nature of structure building in production, which was confirmed by a converging analysis of the pausing patterns in speech. Overall, the results showed that the unfolding of syntactic processing diverges between speaking and listening. -
Giglio, L., Sharoh, D., Ostarek, M., & Hagoort, P. (2024). Connectivity of fronto-temporal regions in syntactic structure building during speaking and listening. Neurobiology of Language, 5(4), 922-941. doi:10.1162/nol_a_00154.
Abstract
The neural infrastructure for sentence production and comprehension has been found to be mostly shared. The same regions are engaged during speaking and listening, with some differences in how strongly they activate depending on modality. In this study, we investigated how modality affects the connectivity between regions previously found to be involved in syntactic processing across modalities. We determined how constituent size and modality affected the connectivity of the pars triangularis of the left inferior frontal gyrus (LIFG) and of the left posterior temporal lobe (LPTL) with the pars opercularis of the LIFG, the anterior temporal lobe (LATL) and the rest of the brain. We found that constituent size reliably increased the connectivity across these frontal and temporal ROIs. Connectivity between the two LIFG regions and the LPTL was enhanced as a function of constituent size in both modalities, and it was upregulated in production possibly because of linearization and motor planning in the frontal cortex. The connectivity of both ROIs with the LATL was lower and only enhanced for larger constituent sizes, suggesting a contributing role of the LATL in sentence processing in both modalities. These results thus show that the connectivity among fronto-temporal regions is upregulated for syntactic structure building in both sentence production and comprehension, providing further evidence for accounts of shared neural resources for sentence-level processing across modalities.Additional information
supplementary information -
Giglio, L., Hagoort, P., & Ostarek, M. (2024). Neural encoding of semantic structures during sentence production. Cerebral Cortex, 34(12): bhae482. doi:10.1093/cercor/bhae482.
Abstract
The neural representations for compositional processing have so far been mostly studied during sentence comprehension. In an fMRI study of sentence production, we investigated the brain representations for compositional processing during speaking. We used a rapid serial visual presentation sentence recall paradigm to elicit sentence production from the conceptual memory of an event. With voxel-wise encoding models, we probed the specificity of the compositional structure built during the production of each sentence, comparing an unstructured model of word meaning without relational information with a model that encodes abstract thematic relations and a model encoding event-specific relational structure. Whole-brain analyses revealed that sentence meaning at different levels of specificity was encoded in a large left frontal-parietal-temporal network. A comparison with semantic structures composed during the comprehension of the same sentences showed similarly distributed brain activity patterns. An ROI analysis over left fronto-temporal language parcels showed that event-specific relational structure above word-specific information was encoded in the left inferior frontal gyrus. Overall, we found evidence for the encoding of sentence meaning during sentence production in a distributed brain network and for the encoding of event-specific semantic structures in the left inferior frontal gyrus.Additional information
supplementary information -
Hagoort, P., & Özyürek, A. (2024). Extending the architecture of language from a multimodal perspective. Topics in Cognitive Science. Advance online publication. doi:10.1111/tops.12728.
Abstract
Language is inherently multimodal. In spoken languages, combined spoken and visual signals (e.g., co-speech gestures) are an integral part of linguistic structure and language representation. This requires an extension of the parallel architecture, which needs to include the visual signals concomitant to speech. We present the evidence for the multimodality of language. In addition, we propose that distributional semantics might provide a format for integrating speech and co-speech gestures in a common semantic representation. -
Kakimoto, N., Wongratwanich, P., Shimamoto, H., Kitisubkanchana, J., Tsujimoto, T., Shimabukuro, K., Verdonschot, R. G., Hasegawa, Y., & Murakami, S. (2024). Comparison of T2 values of the displaced unilateral disc and retrodiscal tissue of temporomandibular joints and their implications. Scientific Reports, 14: 1705. doi:10.1038/s41598-024-52092-6.
Abstract
Unilateral anterior disc displacement (uADD) has been shown to affect the contralateral joints qualitatively. This study aims to assess the quantitative T2 values of the articular disc and retrodiscal tissue of patients with uADD at 1.5 Tesla (T). The study included 65 uADD patients and 17 volunteers. The regions of interest on T2 maps were evaluated. The affected joints demonstrated significantly higher articular disc T2 values (31.5 ± 3.8 ms) than those of the unaffected joints (28.9 ± 4.5 ms) (P < 0.001). For retrodiscal tissue, T2 values of the unaffected (37.8 ± 5.8 ms) and affected joints (41.6 ± 7.1 ms) were significantly longer than those of normal volunteers (34.4 ± 3.2 ms) (P < 0.001). Furthermore, uADD without reduction (WOR) joints (43.3 ± 6.8 ms) showed statistically higher T2 values than the unaffected joints of both uADD with reduction (WR) (33.9 ± 3.8 ms) and uADDWOR (38.9 ± 5.8 ms), and the affected joints of uADDWR (35.8 ± 4.4 ms). The mean T2 value of the unaffected joints of uADDWOR was significantly longer than that of healthy volunteers (P < 0.001). These results provided quantitative evidence for the influence of the affected joints on the contralateral joints. -
Karsan, Ç., Ocak, F., & Bulut, T. (2024). Characterization of speech and language phenotype in the 8p23.1 syndrome. European Child & Adolescent Psychiatry, 33, 3671-3678. doi:10.1007/s00787-024-02448-0.
Abstract
The 8p23.1 duplication syndrome is a rare genetic condition with an estimated prevalence rate of 1 out of 58,000. Although the syndrome was associated with speech and language delays, a comprehensive assessment of speech and language functions has not been undertaken in this population. To address this issue, the present study reports rigorous speech and language, in addition to oral-facial and developmental, assessment of a 50-month-old Turkish-speaking boy who was diagnosed with the 8p23.1 duplication syndrome. Standardized tests of development, articulation and phonology, receptive and expressive language and a language sample analysis were administered to characterize speech and language skills in the patient. The language sample was obtained in an ecologically valid, free play and conversation context. The language sample was then analyzed and compared to a database of age-matched typically-developing children (n = 33) in terms of intelligibility, morphosyntax, semantics/vocabulary, discourse, verbal facility and percentage of errors at word and utterance levels. The results revealed mild to severe problems in articulation and phonology, receptive and expressive language skills, and morphosyntax (mean length of utterance in morphemes). Future research with larger sample sizes and employing detailed speech and language assessment is needed to delineate the speech and language profile in individuals with the 8p23.1 duplication syndrome, which will guide targeted speech and language interventions. -
Kram, L., Ohlerth, A.-K., Ille, S., Meyer, B., & Krieg, S. M. (2024). CompreTAP: Feasibility and reliability of a new language comprehension mapping task via preoperative navigated transcranial magnetic stimulation. Cortex, 171, 347-369. doi:10.1016/j.cortex.2023.09.023.
Abstract
Objective: Stimulation-based language mapping approaches that are used pre- and intra-operatively employ predominantly overt language tasks requiring sufficient language pro-duction abilities. Yet, these production-based setups are often not feasible in brain tumor patients with severe expressive aphasia. This pilot study evaluated the feasibility and reliability of a newly developed language comprehension task with preoperative navigated transcranial magnetic stimulation (nTMS).
Methods: Fifteen healthy subjects and six brain tumor patients with severe expressiven aphasia unable to perform classic overt naming tasks underwent preoperative nTMS language mapping based on an auditory single-word Comprehension TAsk for Perioperative mapping (CompreTAP). Comprehension was probed by button-press responses to auditory stimuli, hence not requiring overt language responses. Positive comprehension areas were identified when stimulation elicited an incorrect or delayed button press. Error categories,case-wise cortical error rate distribution and inter-rater reliability between two experienced specialists were examined.
Results: Overall, the new setup showed to be feasible. Comprehension-disruptions induced by nTMS manifested in no responses, delayed or hesitant responses, searching behavior or selection of wrong target items across all patients and controls and could be performed even in patients with severe expressive aphasia. The analysis agreement between both specialists was substantial for classifying comprehension-positive and -negative sites. Extensive left-hemispheric individual cortical comprehension sites were identified for all patients. Apart from one case presenting with transient worsening of aphasic symptoms. -
Levshina, N., Koptjevskaja-Tamm, M., & Östling, R. (2024). Revered and reviled: A sentiment analysis of female and male referents in three languages. Frontiers in Communication, 9: 1266407. doi:10.3389/fcomm.2024.1266407.
Abstract
Our study contributes to the less explored domain of lexical typology, focusing on semantic prosody and connotation. Semantic derogation, or pejoration of nouns referring to women, whereby such words acquire connotations and further denotations of social pejoration, immorality and/or loose sexuality, has been a very prominent question in studies on gender and language (change). It has been argued that pejoration emerges due to the general derogatory attitudes toward female referents. However, the evidence for systematic differences in connotations of female- vs. male-related words is fragmentary and often fairly impressionistic; moreover, many researchers argue that expressed sentiments toward women (as well as men) often are ambivalent. One should also expect gender differences in connotations to have decreased in the recent years, thanks to the advances of feminism and social progress. We test these ideas in a study of positive and negative connotations of feminine and masculine term pairs such as woman - man, girl - boy, wife - husband, etc. Sentences containing these words were sampled from diachronic corpora of English, Chinese and Russian, and sentiment scores for every word were obtained using two systems for Aspect-Based Sentiment Analysis: PyABSA, and OpenAI’s large language model GPT-3.5. The Generalized Linear Mixed Models of our data provide no indications of significantly more negative sentiment toward female referents in comparison with their male counterparts. However, some of the models suggest that female referents are more infrequently associated with neutral sentiment than male ones. Neither do our data support the hypothesis of the diachronic convergence between the genders. In sum, results suggest that pejoration is unlikely to be explained simply by negative attitudes to female referents in general.Additional information
supplementary materials -
Mishra, C. (2024). The face says it all: Investigating gaze and affective behaviors of social robots. PhD Thesis, Radboud University, Nijmegen.
Additional information
full text via Radboud Repository -
Murphy, E., Rollo, P. S., Segaert, K., Hagoort, P., & Tandon, N. (2024). Multiple dimensions of syntactic structure are resolved earliest in posterior temporal cortex. Progress in Neurobiology, 241: 102669. doi:10.1016/j.pneurobio.2024.102669.
Abstract
How we combine minimal linguistic units into larger structures remains an unresolved topic in neuroscience. Language processing involves the abstract construction of ‘vertical’ and ‘horizontal’ information simultaneously (e.g., phrase structure, morphological agreement), but previous paradigms have been constrained in isolating only one type of composition and have utilized poor spatiotemporal resolution. Using intracranial recordings, we report multiple experiments designed to separate phrase structure from morphosyntactic agreement. Epilepsy patients (n = 10) were presented with auditory two-word phrases grouped into pseudoword-verb (‘trab run’) and pronoun-verb either with or without Person agreement (‘they run’ vs. ‘they runs’). Phrase composition and Person violations both resulted in significant increases in broadband high gamma activity approximately 300ms after verb onset in posterior middle temporal gyrus (pMTG) and posterior superior temporal sulcus (pSTS), followed by inferior frontal cortex (IFC) at 500ms. While sites sensitive to only morphosyntactic violations were distributed, those sensitive to both composition types were generally confined to pSTS/pMTG and IFC. These results indicate that posterior temporal cortex shows the earliest sensitivity for hierarchical linguistic structure across multiple dimensions, providing neural resources for distinct windows of composition. This region is comprised of sparsely interwoven heterogeneous constituents that afford cortical search spaces for dissociable syntactic relations. -
Nazlı, İ., Ferrari, A., Huber-Huber, C., & De Lange, F. P. (2024). Forward and backward blocking in statistical learning. PLOS ONE, 19(8): e0306797. doi:10.1371/journal.pone.0306797.
Abstract
Prediction errors have a prominent role in many forms of learning. For example, in reinforcement learning, agents learn by updating the association between states and outcomes as a function of the prediction error elicited by the event. One paradigm often used to study error-driven learning is blocking. In forward blocking, participants are first presented with stimulus A, followed by outcome X (A→X). In the second phase, A and B are presented together, followed by X (AB→X). Here, A→X blocks the formation of B→X, given that X is already fully predicted by A. In backward blocking, the order of phases is reversed. Here, the association between B and X that is formed during the first learning phase of AB→X is weakened when participants learn exclusively A→X in the second phase. The present study asked the question whether forward and backward blocking occur during visual statistical learning, i.e., the incidental learning of the statistical structure of the environment. In a series of studies, using both forward and backward blocking, we observed statistical learning of temporal associations among pairs of images. While we found no forward blocking, we observed backward blocking, thereby suggesting a retrospective revaluation process in statistical learning and supporting a functional similarity between statistical learning and reinforcement learning.Additional information
supporting information -
Ozker, M., Yu, L., Dugan, P., Doyle, W., Friedman, D., Devinsky, O., & Flinker, A. (2024). Speech-induced suppression and vocal feedback sensitivity in human cortex. eLife, 13: RP94198. doi:10.7554/eLife.94198.1.
Abstract
Across the animal kingdom, neural responses in the auditory cortex are suppressed during vocalization, and humans are no exception. A common hypothesis is that suppression increases sensitivity to auditory feedback, enabling the detection of vocalization errors. This hypothesis has been previously confirmed in non-human primates, however a direct link between auditory suppression and sensitivity in human speech monitoring remains elusive. To address this issue, we obtained intracranial electroencephalography (iEEG) recordings from 35 neurosurgical participants during speech production. We first characterized the detailed topography of auditory suppression, which varied across superior temporal gyrus (STG). Next, we performed a delayed auditory feedback (DAF) task to determine whether the suppressed sites were also sensitive to auditory feedback alterations. Indeed, overlapping sites showed enhanced responses to feedback, indicating sensitivity. Importantly, there was a strong correlation between the degree of auditory suppression and feedback sensitivity, suggesting suppression might be a key mechanism that underlies speech monitoring. Further, we found that when participants produced speech with simultaneous auditory feedback, posterior STG was selectively activated if participants were engaged in a DAF paradigm, suggesting that increased attentional load can modulate auditory feedback sensitivity. -
Quaresima, A. (2024). A Bridge not too far: Neurobiological causal models of word recognition. PhD Thesis, Radboud University Nijmegen, Nijmegen.
Additional information
full text via Radboud Repository -
Seijdel, N., Schoffelen, J.-M., Hagoort, P., & Drijvers, L. (2024). Attention drives visual processing and audiovisual integration during multimodal communication. The Journal of Neuroscience, 44(10): e0870232023. doi:10.1523/JNEUROSCI.0870-23.2023.
Abstract
During communication in real-life settings, our brain often needs to integrate auditory and visual information, and at the same time actively focus on the relevant sources of information, while ignoring interference from irrelevant events. The interaction between integration and attention processes remains poorly understood. Here, we use rapid invisible frequency tagging (RIFT) and magnetoencephalography (MEG) to investigate how attention affects auditory and visual information processing and integration, during multimodal communication. We presented human participants (male and female) with videos of an actress uttering action verbs (auditory; tagged at 58 Hz) accompanied by two movie clips of hand gestures on both sides of fixation (attended stimulus tagged at 65 Hz; unattended stimulus tagged at 63 Hz). Integration difficulty was manipulated by a lower-order auditory factor (clear/degraded speech) and a higher-order visual semantic factor (matching/mismatching gesture). We observed an enhanced neural response to the attended visual information during degraded speech compared to clear speech. For the unattended information, the neural response to mismatching gestures was enhanced compared to matching gestures. Furthermore, signal power at the intermodulation frequencies of the frequency tags, indexing non-linear signal interactions, was enhanced in left frontotemporal and frontal regions. Focusing on LIFG (Left Inferior Frontal Gyrus), this enhancement was specific for the attended information, for those trials that benefitted from integration with a matching gesture. Together, our results suggest that attention modulates audiovisual processing and interaction, depending on the congruence and quality of the sensory input.Additional information
link to preprint -
Sommers, R. P. (2024). Neurobiology of reference. PhD Thesis, Radboud University Nijmegen, Nijmegen.
Additional information
full text via Radboud Repository -
Takashima, A., Carota, F., Schoots, V., Redmann, A., Jehee, J., & Indefrey, P. (2024). Tomatoes are red: The perception of achromatic objects elicits retrieval of associated color knowledge. Journal of Cognitive Neuroscience, 36(1), 24-45. doi:10.1162/jocn_a_02068.
Abstract
When preparing to name an object, semantic knowledge about the object and its attributes is activated, including perceptual properties. It is unclear, however, whether semantic attribute activation contributes to lexical access or is a consequence of activating a concept irrespective of whether that concept is to be named or not. In this study, we measured neural responses using fMRI while participants named objects that are typically green or red, presented in black line drawings. Furthermore, participants underwent two other tasks with the same objects, color naming and semantic judgment, to see if the activation pattern we observe during picture naming is (a) similar to that of a task that requires accessing the color attribute and (b) distinct from that of a task that requires accessing the concept but not its name or color. We used representational similarity analysis to detect brain areas that show similar patterns within the same color category, but show different patterns across the two color categories. In all three tasks, activation in the bilateral fusiform gyri (“Human V4”) correlated with a representational model encoding the red–green distinction weighted by the importance of color feature for the different objects. This result suggests that when seeing objects whose color attribute is highly diagnostic, color knowledge about the objects is retrieved irrespective of whether the color or the object itself have to be named. -
Tamaoka, K., Yu, S., Zhang, J., Otsuka, Y., Lim, H., Koizumi, M., & Verdonschot, R. G. (2024). Syntactic structures in motion: Investigating word order variations in verb-final (Korean) and verb-initial (Tongan) languages. Frontiers in Psychology, 15: 1360191. doi:10.3389/fpsyg.2024.1360191.
Abstract
This study explored sentence processing in two typologically distinct languages: Korean, a verb-final language, and Tongan, a verb-initial language. The first experiment revealed that in Korean, sentences arranged in the scrambled OSV (Object, Subject, Verb) order were processed more slowly than those in the canonical SOV order, highlighting a scrambling effect. It also found that sentences with subject topicalization in the SOV order were processed as swiftly as those in the canonical form, whereas sentences with object topicalization in the OSV order were processed with speeds and accuracy comparable to scrambled sentences. However, since topicalization and scrambling in Korean use the same OSV order, independently distinguishing the effects of topicalization is challenging. In contrast, Tongan allows for a clear separation of word orders for topicalization and scrambling, facilitating an independent evaluation of topicalization effects. The second experiment, employing a maze task, confirmed that Tongan’s canonical VSO order was processed more efficiently than the VOS scrambled order, thereby verifying a scrambling effect. The third experiment investigated the effects of both scrambling and topicalization in Tongan, finding that the canonical VSO order was processed most efficiently in terms of speed and accuracy, unlike the VOS scrambled and SVO topicalized orders. Notably, the OVS object-topicalized order was processed as efficiently as the VSO canonical order, while the SVO subject-topicalized order was slower than VSO but faster than VOS. By independently assessing the effects of topicalization apart from scrambling, this study demonstrates that both subject and object topicalization in Tongan facilitate sentence processing, contradicting the predictions based on movement-based anticipation.Additional information
appendix 1-3 -
Ter Bekke, M., Drijvers, L., & Holler, J. (2024). Hand gestures have predictive potential during conversation: An investigation of the timing of gestures in relation to speech. Cognitive Science, 48(1): e13407. doi:10.1111/cogs.13407.
Abstract
During face-to-face conversation, transitions between speaker turns are incredibly fast. These fast turn exchanges seem to involve next speakers predicting upcoming semantic information, such that next turn planning can begin before a current turn is complete. Given that face-to-face conversation also involves the use of communicative bodily signals, an important question is how bodily signals such as co-speech hand gestures play into these processes of prediction and fast responding. In this corpus study, we found that hand gestures that depict or refer to semantic information started before the corresponding information in speech, which held both for the onset of the gesture as a whole, as well as the onset of the stroke (the most meaningful part of the gesture). This early timing potentially allows listeners to use the gestural information to predict the corresponding semantic information to be conveyed in speech. Moreover, we provided further evidence that questions with gestures got faster responses than questions without gestures. However, we found no evidence for the idea that how much a gesture precedes its lexical affiliate (i.e., its predictive potential) relates to how fast responses were given. The findings presented here highlight the importance of the temporal relation between speech and gesture and help to illuminate the potential mechanisms underpinning multimodal language processing during face-to-face conversation. -
Ter Bekke, M., Drijvers, L., & Holler, J. (2024). Gestures speed up responses to questions. Language, Cognition and Neuroscience, 39(4), 423-430. doi:10.1080/23273798.2024.2314021.
Abstract
Most language use occurs in face-to-face conversation, which involves rapid turn-taking. Seeing communicative bodily signals in addition to hearing speech may facilitate such fast responding. We tested whether this holds for co-speech hand gestures by investigating whether these gestures speed up button press responses to questions. Sixty native speakers of Dutch viewed videos in which an actress asked yes/no-questions, either with or without a corresponding iconic hand gesture. Participants answered the questions as quickly and accurately as possible via button press. Gestures did not impact response accuracy, but crucially, gestures sped up responses, suggesting that response planning may be finished earlier when gestures are seen. How much gestures sped up responses was not related to their timing in the question or their timing with respect to the corresponding information in speech. Overall, these results are in line with the idea that multimodality may facilitate fast responding during face-to-face conversation. -
Terporten, R., Huizeling, E., Heidlmayr, K., Hagoort, P., & Kösem, A. (2024). The interaction of context constraints and predictive validity during sentence reading. Journal of Cognitive Neuroscience, 36(2), 225-238. doi:10.1162/jocn_a_02082.
Abstract
Words are not processed in isolation; instead, they are commonly embedded in phrases and sentences. The sentential context influences the perception and processing of a word. However, how this is achieved by brain processes and whether predictive mechanisms underlie this process remain a debated topic. Here, we employed an experimental paradigm in which we orthogonalized sentence context constraints and predictive validity, which was defined as the ratio of congruent to incongruent sentence endings within the experiment. While recording electroencephalography, participants read sentences with three levels of sentential context constraints (high, medium, and low). Participants were also separated into two groups that differed in their ratio of valid congruent to incongruent target words that could be predicted from the sentential context. For both groups, we investigated modulations of alpha power before, and N400 amplitude modulations after target word onset. The results reveal that the N400 amplitude gradually decreased with higher context constraints and cloze probability. In contrast, alpha power was not significantly affected by context constraint. Neither the N400 nor alpha power were significantly affected by changes in predictive validity. -
Thothathiri, M., Basnakova, J., Lewis, A. G., & Briand, J. M. (2024). Fractionating difficulty during sentence comprehension using functional neuroimaging. Cerebral Cortex, 34(2): bhae032. doi:10.1093/cercor/bhae032.
Abstract
Sentence comprehension is highly practiced and largely automatic, but this belies the complexity of the underlying processes. We used functional neuroimaging to investigate garden-path sentences that cause difficulty during comprehension, in order to unpack the different processes used to support sentence interpretation. By investigating garden-path and other types of sentences within the same individuals, we functionally profiled different regions within the temporal and frontal cortices in the left hemisphere. The results revealed that different aspects of comprehension difficulty are handled by left posterior temporal, left anterior temporal, ventral left frontal, and dorsal left frontal cortices. The functional profiles of these regions likely lie along a spectrum of specificity to generality, including language-specific processing of linguistic representations, more general conflict resolution processes operating over linguistic representations, and processes for handling difficulty in general. These findings suggest that difficulty is not unitary and that there is a role for a variety of linguistic and non-linguistic processes in supporting comprehension.Additional information
supplementary information -
Ullman, M. T., Bulut, T., & Walenski, M. (2024). Hijacking limitations of working memory load to test for composition in language. Cognition, 251: 105875. doi:10.1016/j.cognition.2024.105875.
Abstract
Although language depends on storage and composition, just what is stored or (de)composed remains unclear. We leveraged working memory load limitations to test for composition, hypothesizing that decomposed forms should particularly tax working memory. We focused on a well-studied paradigm, English inflectional morphology. We predicted that (compositional) regulars should be harder to maintain in working memory than (non-compositional) irregulars, using a 3-back production task. Frequency, phonology, orthography, and other potentially confounding factors were controlled for. Compared to irregulars, regulars and their accompanying −s/−ing-affixed filler items yielded more errors. Underscoring the decomposition of only regulars, regulars yielded more bare-stem (e.g., walk) and stem affixation errors (walks/walking) than irregulars, whereas irregulars yielded more past-tense-form affixation errors (broughts/tolded). In line with previous evidence that regulars can be stored under certain conditions, the regular-irregular difference held specifically for phonologically consistent (not inconsistent) regulars, in particular for both low and high frequency consistent regulars in males, but only for low frequency consistent regulars in females. Sensitivity analyses suggested the findings were robust. The study further elucidates the computation of inflected forms, and introduces a simple diagnostic for linguistic composition.Additional information
Data availabillity -
Verdonschot, R. G., Van der Wal, J., Lewis, A. G., Knudsen, B., Von Grebmer zu Wolfsthurn, S., Schiller, N. O., & Hagoort, P. (2024). Information structure in Makhuwa: Electrophysiological evidence for a universal processing account. Proceedings of the National Academy of Sciences of the United States of America, 121(30): e2315438121. doi:10.1073/pnas.2315438121.
Abstract
There is evidence from both behavior and brain activity that the way information is structured, through the use of focus, can up-regulate processing of focused constituents, likely to give prominence to the relevant aspects of the input. This is hypothesized to be universal, regardless of the different ways in which languages encode focus. In order to test this universalist hypothesis, we need to go beyond the more familiar linguistic strategies for marking focus, such as by means of intonation or specific syntactic structures (e.g., it-clefts). Therefore, in this study, we examine Makhuwa-Enahara, a Bantu language spoken in northern Mozambique, which uniquely marks focus through verbal conjugation. The participants were presented with sentences that consisted of either a semantically anomalous constituent or a semantically nonanomalous constituent. Moreover, focus on this particular constituent could be either present or absent. We observed a consistent pattern: Focused information generated a more negative N400 response than the same information in nonfocus position. This demonstrates that regardless of how focus is marked, its consequence seems to result in an upregulation of processing of information that is in focus.Additional information
supplementary materials -
Wang, J., Schiller, N. O., & Verdonschot, R. G. (2024). Morphological encoding in language production: Electrophysiological evidence from Mandarin Chinese compound words. PLOS ONE, 19(10): e0310816. doi:10.1371/journal.pone.0310816.
Abstract
This study investigates the role of morphology during speech planning in Mandarin Chinese. In a long-lag priming experiment, thirty-two Mandarin Chinese native speakers were asked to name target pictures (e.g., “山” /shan1/ "mountain"). The design involved pictures referring to morpheme-related compound words (e.g., “山羊” /shan1yang2/ "goat") sharing a morpheme with the first (e.g., “山” /shan1/ "mountain") or the second position of the targets (e.g., 脑 /nao3/ “brain” with prime电脑 /dian4nao3/ “computer”), as well as unrelated control items. Behavioral and electrophysiological data were collected. Interestingly, the behavioral results went against earlier findings in Indo-European languages, showing that the target picture naming was not facilitated by morphologically related primes. This suggests no morphological priming for individual constituents in producing Mandarin Chinese disyllabic compound words. However, targets in the morpheme-related word condition did elicit a reduced N400 compared with targets in the morpheme-unrelated condition for the first position overlap in the ERP analyses but not for the second, suggesting automatic activation of the first individual constituent in noun compound production. Implications of these findings are discussed. -
Wang, J., Schiller, N. O., & Verdonschot, R. G. (2024). Word and morpheme frequency effects in naming Mandarin Chinese compounds: More than a replication. Brain and Language, 259: 105496. doi:10.1016/j.bandl.2024.105496.
Abstract
The question whether compound words are stored in our mental lexicon in a decomposed or full-listing way prompted Janssen and colleagues (2008) to investigate the representation of compounds using word and morpheme frequencies manipulations. Our study replicated their study using a new set of stimuli from a spoken corpus and incorporating EEG data for a more detailed investigation. In the current study, despite ERP analyses revealing no word frequency or morpheme frequency effects across conditions, behavioral outcomes indicated that Mandarin compounds are not sensitive to word frequency. Instead, the response times highlighted a morpheme frequency effect in naming Mandarin compounds, which contrasted with the findings of Janssen and colleagues. These findings challenge the full-listing model and instead support the decompositional model. -
Wolna, A., Szewczyk, J., Diaz, M., Domagalik, A., Szwed, M., & Wodniecka, Z. (2024). Domain-general and language-specific contributions to speech production in a second language: An fMRI study using functional localizers. Scientific Reports, 14: 57. doi:10.1038/s41598-023-49375-9.
Abstract
For bilinguals, speaking in a second language (L2) compared to the native language (L1) is usually more difficult. In this study we asked whether the difficulty in L2 production reflects increased demands imposed on domain-general or core language mechanisms. We compared the brain response to speech production in L1 and L2 within two functionally-defined networks in the brain: the Multiple Demand (MD) network and the language network. We found that speech production in L2 was linked to a widespread increase of brain activity in the domain-general MD network. The language network did not show a similarly robust differences in processing speech in the two languages, however, we found increased response to L2 production in the language-specific portion of the left inferior frontal gyrus (IFG). To further explore our results, we have looked at domain-general and language-specific response within the brain structures postulated to form a Bilingual Language Control (BLC) network. Within this network, we found a robust increase in response to L2 in the domain-general, but also in some language-specific voxels including in the left IFG. Our findings show that L2 production strongly engages domain-general mechanisms, but only affects language sensitive portions of the left IFG. These results put constraints on the current model of bilingual language control by precisely disentangling the domain-general and language-specific contributions to the difficulty in speech production in L2.Additional information
supplementary materials -
Wolna, A., Szewczyk, J., Diaz, M., Domagalik, A., Szwed, M., & Wodniecka, Z. (2024). Tracking components of bilingual language control in speech production: An fMRI study using functional localizers. Neurobiology of Language, 5(2), 315-340. doi:10.1162/nol_a_00128.
Abstract
When bilingual speakers switch back to speaking in their native language (L1) after having used their second language (L2), they often experience difficulty in retrieving words in their L1. This phenomenon is referred to as the L2 after-effect. We used the L2 after-effect as a lens to explore the neural bases of bilingual language control mechanisms. Our goal was twofold: first, to explore whether bilingual language control draws on domain-general or language-specific mechanisms; second, to investigate the precise mechanism(s) that drive the L2 after-effect. We used a precision fMRI approach based on functional localizers to measure the extent to which the brain activity that reflects the L2 after-effect overlaps with the language network (Fedorenko et al., 2010) and the domain-general multiple demand network (Duncan, 2010), as well as three task-specific networks that tap into interference resolution, lexical retrieval, and articulation. Forty-two Polish–English bilinguals participated in the study. Our results show that the L2 after-effect reflects increased engagement of domain-general but not language-specific resources. Furthermore, contrary to previously proposed interpretations, we did not find evidence that the effect reflects increased difficulty related to lexical access, articulation, and the resolution of lexical interference. We propose that difficulty of speech production in the picture naming paradigm—manifested as the L2 after-effect—reflects interference at a nonlinguistic level of task schemas or a general increase of cognitive control engagement during speech production in L1 after L2.Additional information
supplementary materials -
Zhao, J., Martin, A. E., & Coopmans, C. W. (2024). Structural and sequential regularities modulate phrase-rate neural tracking. Scientific Reports, 14: 16603. doi:10.1038/s41598-024-67153-z.
Abstract
Electrophysiological brain activity has been shown to synchronize with the quasi-regular repetition of grammatical phrases in connected speech—so-called phrase-rate neural tracking. Current debate centers around whether this phenomenon is best explained in terms of the syntactic properties of phrases or in terms of syntax-external information, such as the sequential repetition of parts of speech. As these two factors were confounded in previous studies, much of the literature is compatible with both accounts. Here, we used electroencephalography (EEG) to determine if and when the brain is sensitive to both types of information. Twenty native speakers of Mandarin Chinese listened to isochronously presented streams of monosyllabic words, which contained either grammatical two-word phrases (e.g., catch fish, sell house) or non-grammatical word combinations (e.g., full lend, bread far). Within the grammatical conditions, we varied two structural factors: the position of the head of each phrase and the type of attachment. Within the non-grammatical conditions, we varied the consistency with which parts of speech were repeated. Tracking was quantified through evoked power and inter-trial phase coherence, both derived from the frequency-domain representation of EEG responses. As expected, neural tracking at the phrase rate was stronger in grammatical sequences than in non-grammatical sequences without syntactic structure. Moreover, it was modulated by both attachment type and head position, revealing the structure-sensitivity of phrase-rate tracking. We additionally found that the brain tracks the repetition of parts of speech in non-grammatical sequences. These data provide an integrative perspective on the current debate about neural tracking effects, revealing that the brain utilizes regularities computed over multiple levels of linguistic representation in guiding rhythmic computation.Additional information
full stimulus list, the raw EEG data, and the analysis scripts -
Zora, H., Bowin, H., Heldner, M., Riad, T., & Hagoort, P. (2024). The role of pitch accent in discourse comprehension and the markedness of Accent 2 in Central Swedish. In Y. Chen, A. Chen, & A. Arvaniti (
Eds. ), Proceedings of Speech Prosody 2024 (pp. 921-925). doi:10.21437/SpeechProsody.2024-186.Abstract
In Swedish, words are associated with either of two pitch contours known as Accent 1 and Accent 2. Using a psychometric test, we investigated how listeners judge pitch accent violations while interpreting discourse. Forty native speakers of Central Swedish were presented with auditory dialogues, where test words were appropriately or inappropriately accented in a given context, and asked to judge the correctness of sentences containing the test words. Data indicated a statistically significant effect of wrong accent pattern on the correctness judgment. Both Accent 1 and Accent 2 violations interfered with the coherent interpretation of discourse and were judged as incorrect by the listeners. Moreover, there was a statistically significant difference in the perceived correctness between the accent patterns. Accent 2 violations led to a lower correctness score compared to Accent 1 violations, indicating that the listeners were more sensitive to pitch accent violations in Accent 2 words than in Accent 1 words. This result is in line with the notion that Accent 2 is marked and lexically represented in Central Swedish. Taken together, these findings indicate that listeners use both Accent 1 and Accent 2 to arrive at the correct interpretation of the linguistic input, while assigning varying degrees of relevance to them depending on their markedness. -
Acheson, D. J., & Hagoort, P. (2014). Twisting tongues to test for conflict monitoring in speech production. Frontiers in Human Neuroscience, 8: 206. doi:10.3389/fnhum.2014.00206.
Abstract
A number of recent studies have hypothesized that monitoring in speech production may occur via domain-general mechanisms responsible for the detection of response conflict. Outside of language, two ERP components have consistently been elicited in conflict-inducing tasks (e.g., the flanker task): the stimulus-locked N2 on correct trials, and the response-locked error-related negativity (ERN). The present investigation used these electrophysiological markers to test whether a common response conflict monitor is responsible for monitoring in speech and non-speech tasks. Electroencephalography (EEG) was recorded while participants performed a tongue twister (TT) task and a manual version of the flanker task. In the TT task, people rapidly read sequences of four nonwords arranged in TT and non-TT patterns three times. In the flanker task, people responded with a left/right button press to a center-facing arrow, and conflict was manipulated by the congruency of the flanking arrows. Behavioral results showed typical effects of both tasks, with increased error rates and slower speech onset times for TT relative to non-TT trials and for incongruent relative to congruent flanker trials. In the flanker task, stimulus-locked EEG analyses replicated previous results, with a larger N2 for incongruent relative to congruent trials, and a response-locked ERN. In the TT task, stimulus-locked analyses revealed broad, frontally-distributed differences beginning around 50 ms and lasting until just before speech initiation, with TT trials more negative than non-TT trials; response-locked analyses revealed an ERN. Correlation across these measures showed some correlations within a task, but little evidence of systematic cross-task correlation. Although the present results do not speak against conflict signals from the production system serving as cues to self-monitoring, they are not consistent with signatures of response conflict being mediated by a single, domain-general conflict monitor -
Araújo, S., Faísca, L., Bramão, I., Petersson, K. M., & Reis, A. (2014). Lexical and phonological processes in dyslexic readers: Evidences from a visual lexical decision task. Dyslexia, 20, 38-53. doi:10.1002/dys.1461.
Abstract
The aim of the present study was to investigate whether reading failure in the context of an orthography of intermediate consistency is linked to inefficient use of the lexical orthographic reading procedure. The performance of typically developing and dyslexic Portuguese-speaking children was examined in a lexical decision task, where the stimulus lexicality, word frequency and length were manipulated. Both lexicality and length effects were larger in the dyslexic group than in controls, although the interaction between group and frequency disappeared when the data were transformed to control for general performance factors. Children with dyslexia were influenced in lexical decision making by the stimulus length of words and pseudowords, whereas age-matched controls were influenced by the length of pseudowords only. These findings suggest that non-impaired readers rely mainly on lexical orthographic information, but children with dyslexia preferentially use the phonological decoding procedure—albeit poorly—most likely because they struggle to process orthographic inputs as a whole such as controls do. Accordingly, dyslexic children showed significantly poorer performance than controls for all types of stimuli, including words that could be considered over-learned, such as high-frequency words. This suggests that their orthographic lexical entries are less established in the orthographic lexicon -
Basnakova, J., Weber, K., Petersson, K. M., Van Berkum, J. J. A., & Hagoort, P. (2014). Beyond the language given: The neural correlates of inferring speaker meaning. Cerebral Cortex, 24(10), 2572-2578. doi:10.1093/cercor/bht112.
Abstract
Even though language allows us to say exactly what we mean, we often use language to say things indirectly, in a way that depends on the specific communicative context. For example, we can use an apparently straightforward sentence like "It is hard to give a good presentation" to convey deeper meanings, like "Your talk was a mess!" One of the big puzzles in language science is how listeners work out what speakers really mean, which is a skill absolutely central to communication. However, most neuroimaging studies of language comprehension have focused on the arguably much simpler, context-independent process of understanding direct utterances. To examine the neural systems involved in getting at contextually constrained indirect meaning, we used functional magnetic resonance imaging as people listened to indirect replies in spoken dialog. Relative to direct control utterances, indirect replies engaged dorsomedial prefrontal cortex, right temporo-parietal junction and insula, as well as bilateral inferior frontal gyrus and right medial temporal gyrus. This suggests that listeners take the speaker's perspective on both cognitive (theory of mind) and affective (empathy-like) levels. In line with classic pragmatic theories, our results also indicate that currently popular "simulationist" accounts of language comprehension fail to explain how listeners understand the speaker's intended message.Additional information
http://cercor.oxfordjournals.org/content/early/2013/05/02/cercor.bht112/suppl/D… -
Cai, D., Fonteijn, H. M., Guadalupe, T., Zwiers, M., Wittfeld, K., Teumer, A., Hoogman, M., Arias Vásquez, A., Yang, Y., Buitelaar, J., Fernández, G., Brunner, H. G., Van Bokhoven, H., Franke, B., Hegenscheid, K., Homuth, G., Fisher, S. E., Grabe, H. J., Francks, C., & Hagoort, P. (2014). A genome wide search for quantitative trait loci affecting the cortical surface area and thickness of Heschl's gyrus. Genes, Brain and Behavior, 13, 675-685. doi:10.1111/gbb.12157.
Abstract
Heschl's gyrus (HG) is a core region of the auditory cortex whose morphology is highly variable across individuals. This variability has been linked to sound perception ability in both speech and music domains. Previous studies show that variations in morphological features of HG, such as cortical surface area and thickness, are heritable. To identify genetic variants that affect HG morphology, we conducted a genome-wide association scan (GWAS) meta-analysis in 3054 healthy individuals using HG surface area and thickness as quantitative traits. None of the single nucleotide polymorphisms (SNPs) showed association P values that would survive correction for multiple testing over the genome. The most significant association was found between right HG area and SNP rs72932726 close to gene DCBLD2 (3q12.1; P=2.77x10(-7)). This SNP was also associated with other regions involved in speech processing. The SNP rs333332 within gene KALRN (3q21.2; P=2.27x10(-6)) and rs143000161 near gene COBLL1 (2q24.3; P=2.40x10(-6)) were associated with the area and thickness of left HG, respectively. Both genes are involved in the development of the nervous system. The SNP rs7062395 close to the X-linked deafness gene POU3F4 was associated with right HG thickness (Xq21.1; P=2.38x10(-6)). This is the first molecular genetic analysis of variability in HG morphology -
Capilla, A., Schoffelen, J.-M., Paterson, G., Thut, G., & Gross, J. (2014). Dissociated α-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception. Cerebral Cortex., 24(2), 550-561. doi:10.1093/cercor/bhs343.
Abstract
Modulations of occipito-parietal α-band (8–14 Hz) power that are opposite in direction (α-enhancement vs. α-suppression) and origin of generation (ipsilateral vs. contralateral to the locus of attention) are a robust correlate of anticipatory visuospatial attention. Yet, the neural generators of these α-band modulations, their interdependence across homotopic areas, and their respective contribution to subsequent perception remain unclear. To shed light on these questions, we employed magnetoencephalography, while human volunteers performed a spatially cued detection task. Replicating previous findings, we found α-power enhancement ipsilateral to the attended hemifield and contralateral α-suppression over occipitoparietal sensors. Source localization (beamforming) analysis showed that α-enhancement and suppression were generated in 2 distinct brain regions, located in the dorsal and ventral visual streams, respectively. Moreover, α-enhancement and suppression showed different dynamics and contribution to perception. In contrast to the initial and transient dorsal α-enhancement, α-suppression in ventro-lateral occipital cortex was sustained and influenced subsequent target detection. This anticipatory biasing of ventrolateral extrastriate α-activity probably reflects increased receptivity in the brain region specialized in processing upcoming target features. Our results add to current models on the role of α-oscillations in attention orienting by showing that α-enhancement and suppression can be dissociated in time, space, and perceptual relevance.Additional information
Capilla_Suppl_Data.pdf -
Chang, F., & Fitz, H. (2014). Computational models of sentence production: A dual-path approach. In M. Goldrick, & M. Miozzo (
Eds. ), The Oxford handbook of language production (pp. 70-89). Oxford: Oxford University Press.Abstract
Sentence production is the process we use to create language-specific sentences that convey particular meanings. In production, there are complex interactions between meaning, words, and syntax at different points in sentences. Computational models can make these interactions explicit and connectionist learning algorithms have been useful for building such models. Connectionist models use domaingeneral mechanisms to learn internal representations and these mechanisms can also explain evidence of long-term syntactic adaptation in adult speakers. This paper will review work showing that these models can generalize words in novel ways and learn typologically-different languages like English and Japanese. It will also present modeling work which shows that connectionist learning algorithms can account for complex sentence production in children and adult production phenomena like structural priming, heavy NP shift, and conceptual/lexical accessibility. -
Chu, M., Meyer, A. S., Foulkes, L., & Kita, S. (2014). Individual differences in frequency and saliency of speech-accompanying gestures: The role of cognitive abilities and empathy. Journal of Experimental Psychology: General, 143, 694-709. doi:10.1037/a0033861.
Abstract
The present study concerns individual differences in gesture production. We used correlational and multiple regression analyses to examine the relationship between individuals’ cognitive abilities and empathy levels and their gesture frequency and saliency. We chose predictor variables according to experimental evidence of the functions of gesture in speech production and communication. We examined 3 types of gestures: representational gestures, conduit gestures, and palm-revealing gestures. Higher frequency of representational gestures was related to poorer visual and spatial working memory, spatial transformation ability, and conceptualization ability; higher frequency of conduit gestures was related to poorer visual working memory, conceptualization ability, and higher levels of empathy; and higher frequency of palm-revealing gestures was related to higher levels of empathy. The saliency of all gestures was positively related to level of empathy. These results demonstrate that cognitive abilities and empathy levels are related to individual differences in gesture frequency and saliency -
Chu, M., & Hagoort, P. (2014). Synchronization of speech and gesture: Evidence for interaction in action. Journal of Experimental Psychology: General, 143(4), 1726-1741. doi:10.1037/a0036281.
Abstract
Language and action systems are highly interlinked. A critical piece of evidence is that speech and its accompanying gestures are tightly synchronized. Five experiments were conducted to test 2 hypotheses about the synchronization of speech and gesture. According to the interactive view, there is continuous information exchange between the gesture and speech systems, during both their planning and execution phases. According to the ballistic view, information exchange occurs only during the planning phases of gesture and speech, but the 2 systems become independent once their execution has been initiated. In all experiments, participants were required to point to and/or name a light that had just lit up. Virtual reality and motion tracking technologies were used to disrupt their gesture or speech execution. Participants delayed their speech onset when their gesture was disrupted. They did so even when their gesture was disrupted at its late phase and even when they received only the kinesthetic feedback of their gesture. Also, participants prolonged their gestures when their speech was disrupted. These findings support the interactive view and add new constraints on models of speech and gesture production -
Cristia, A., Minagawa-Kawai, Y., Egorova, N., Gervain, J., Filippin, L., Cabrol, D., & Dupoux, E. (2014). Neural correlates of infant accent discrimination: An fNIRS study. Developmental Science, 17(4), 628-635. doi:10.1111/desc.12160.
Abstract
The present study investigated the neural correlates of infant discrimination of very similar linguistic varieties (Quebecois and Parisian French) using functional Near InfraRed Spectroscopy. In line with previous behavioral and electrophysiological data, there was no evidence that 3-month-olds discriminated the two regional accents, whereas 5-month-olds did, with the locus of discrimination in left anterior perisylvian regions. These neuroimaging results suggest that a developing language network relying crucially on left perisylvian cortices sustains infants' discrimination of similar linguistic varieties within this early period of infancy.Files private
Request files -
Cristia, A., Seidl, A., Junge, C., Soderstrom, M., & Hagoort, P. (2014). Predicting individual variation in language from infant speech perception measures. Child development, 85(4), 1330-1345. doi:10.1111/cdev.12193.
Abstract
There are increasing reports that individual variation in behavioral and neurophysiological measures of infant speech processing predicts later language outcomes, and specifically concurrent or subsequent vocabulary size. If such findings are held up under scrutiny, they could both illuminate theoretical models of language development and contribute to the prediction of communicative disorders. A qualitative, systematic review of this emergent literature illustrated the variety of approaches that have been used and highlighted some conceptual problems regarding the measurements. A quantitative analysis of the same data established that the bivariate relation was significant, with correlations of similar strength to those found for well-established nonlinguistic predictors of language. Further exploration of infant speech perception predictors, particularly from a methodological perspective, is recommended. -
Cristia, A., & Seidl, A. (2014). The hyperarticulation hypothesis of infant-directed speech. Journal of Child Language, 41(4), 913-934. doi:10.1017/S0305000912000669.
Abstract
Typically, the point vowels [i,ɑ,u] are acoustically more peripheral in infant-directed speech (IDS) compared to adult-directed speech (ADS). If caregivers seek to highlight lexically relevant contrasts in IDS, then two sounds that are contrastive should become more distinct, whereas two sounds that are surface realizations of the same underlying sound category should not. To test this prediction, vowels that are phonemically contrastive ([i-ɪ] and [eɪ-ε]), vowels that map onto the same underlying category ([æ- ] and [ε- ]), and the point vowels [i,ɑ,u] were elicited in IDS and ADS by American English mothers of two age groups of infants (four- and eleven-month-olds). As in other work, point vowels were produced in more peripheral positions in IDS compared to ADS. However, there was little evidence of hyperarticulation per se (e.g. [i-ɪ] was hypoarticulated). We suggest that across-the-board lexically based hyperarticulation is not a necessary feature of IDS.Additional information
CORRIGENDUM -
Dautriche, I., Cristia, A., Brusini, P., Yuan, S., Fisher, C., & Christophe, A. (2014). Toddlers default to canonical surface-to-meaning mapping when learning verbs. Child Development, 85(3), 1168-1180. doi:10.1111/cdev.12183.
Abstract
This work was supported by grants from the French Agence Nationale de la Recherche (ANR-2010-BLAN-1901) and from French Fondation de France to Anne Christophe, from the National Institute of Child Health and Human Development (HD054448) to Cynthia Fisher, Fondation Fyssen and Ecole de Neurosciences de Paris to Alex Cristia, and a PhD fellowship from the Direction Générale de l'Armement (DGA, France) supported by the PhD program FdV (Frontières du Vivant) to Isabelle Dautriche. We thank Isabelle Brunet for the recruitment, Michel Dutat for the technical support, and Hernan Anllo for his puppet mastery skill. We are grateful to the families that participated in this study. We also thank two anonymous reviewers for their comments on an earlier draft of this manuscript. -
Dolscheid, S., Hunnius, S., Casasanto, D., & Majid, A. (2014). Prelinguistic infants are sensitive to space-pitch associations found across cultures. Psychological Science, 25(6), 1256-1261. doi:10.1177/0956797614528521.
Abstract
People often talk about musical pitch using spatial metaphors. In English, for instance, pitches can be “high” or “low” (i.e., height-pitch association), whereas in other languages, pitches are described as “thin” or “thick” (i.e., thickness-pitch association). According to results from psychophysical studies, metaphors in language can shape people’s nonlinguistic space-pitch representations. But does language establish mappings between space and pitch in the first place, or does it only modify preexisting associations? To find out, we tested 4-month-old Dutch infants’ sensitivity to height-pitch and thickness-pitch mappings using a preferential-looking paradigm. The infants looked significantly longer at cross-modally congruent stimuli for both space-pitch mappings, which indicates that infants are sensitive to these associations before language acquisition. The early presence of space-pitch mappings means that these associations do not originate from language. Instead, language builds on preexisting mappings, changing them gradually via competitive associative learning. Space-pitch mappings that are language-specific in adults develop from mappings that may be universal in infants. -
Dolscheid, S., Willems, R. M., Hagoort, P., & Casasanto, D. (2014). The relation of space and musical pitch in the brain. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (
Eds. ), Proceedings of the 36th Annual Meeting of the Cognitive Science Society (CogSci 2014) (pp. 421-426). Austin, Tx: Cognitive Science Society.Abstract
Numerous experiments show that space and musical pitch are
closely linked in people's minds. However, the exact nature of
space-pitch associations and their neuronal underpinnings are
not well understood. In an fMRI experiment we investigated
different types of spatial representations that may underlie
musical pitch. Participants judged stimuli that varied in
spatial height in both the visual and tactile modalities, as well
as auditory stimuli that varied in pitch height. In order to
distinguish between unimodal and multimodal spatial bases of
musical pitch, we examined whether pitch activations were
present in modality-specific (visual or tactile) versus
multimodal (visual and tactile) regions active during spatial
height processing. Judgments of musical pitch were found to
activate unimodal visual areas, suggesting that space-pitch
associations may involve modality-specific spatial
representations, supporting a key assumption of embodied
theories of metaphorical mental representation. -
Fitz, H. (2014). Computermodelle für Spracherwerb und Sprachproduktion. Forschungsbericht 2014 - Max-Planck-Institut für Psycholinguistik. In Max-Planck-Gesellschaft Jahrbuch 2014. München: Max Planck Society for the Advancement of Science. Retrieved from http://www.mpg.de/7850678/Psycholinguistik_JB_2014?c=8236817.
Abstract
Relative clauses are a syntactic device to create complex sentences and they make language structurally productive. Despite a considerable number of experimental studies, it is still largely unclear how children learn relative clauses and how these are processed in the language system. Researchers at the MPI for Psycholinguistics used a computational learning model to gain novel insights into these issues. The model explains the differential development of relative clauses in English as well as cross-linguistic differences -
Folia, V., & Petersson, K. M. (2014). Implicit structured sequence learning: An fMRI study of the structural mere-exposure effect. Frontiers in Psychology, 5: 41. doi:10.3389/fpsyg.2014.00041.
Abstract
In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference FMRI baseline measurement allowed us to conclude that these FMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs. -
Ganushchak, L. Y., & Acheson, D. J. (
Eds. ). (2014). What's to be learned from speaking aloud? - Advances in the neurophysiological measurement of overt language production. [Research topic] [Special Issue]. Frontiers in Language Sciences. Retrieved from http://www.frontiersin.org/Language_Sciences/researchtopics/What_s_to_be_Learned_from_Spea/1671.Abstract
Researchers have long avoided neurophysiological experiments of overt speech production due to the suspicion that artifacts caused by muscle activity may lead to a bad signal-to-noise ratio in the measurements. However, the need to actually produce speech may influence earlier processing and qualitatively change speech production processes and what we can infer from neurophysiological measures thereof. Recently, however, overt speech has been successfully investigated using EEG, MEG, and fMRI. The aim of this Research Topic is to draw together recent research on the neurophysiological basis of language production, with the aim of developing and extending theoretical accounts of the language production process. In this Research Topic of Frontiers in Language Sciences, we invite both experimental and review papers, as well as those about the latest methods in acquisition and analysis of overt language production data. All aspects of language production are welcome: i.e., from conceptualization to articulation during native as well as multilingual language production. Focus should be placed on using the neurophysiological data to inform questions about the processing stages of language production. In addition, emphasis should be placed on the extent to which the identified components of the electrophysiological signal (e.g., ERP/ERF, neuronal oscillations, etc.), brain areas or networks are related to language comprehension and other cognitive domains. By bringing together electrophysiological and neuroimaging evidence on language production mechanisms, a more complete picture of the locus of language production processes and their temporal and neurophysiological signatures will emerge. -
De Grauwe, S., Willems, R. M., Rüschemeyer, S.-A., Lemhöfer, K., & Schriefers, H. (2014). Embodied language in first- and second-language speakers: Neural correlates of processing motor verbs. Neuropsychologia, 56, 334-349. doi:10.1016/j.neuropsychologia.2014.02.003.
Abstract
The involvement of neural motor and sensory systems in the processing of language has so far mainly been studied in native (L1) speakers. In an fMRI experiment, we investigated whether non-native (L2) semantic representations are rich enough to allow for activation in motor and somatosensory brain areas. German learners of Dutch and a control group of Dutch native speakers made lexical decisions about visually presented Dutch motor and non-motor verbs. Region-of-interest (ROI) and whole-brain analyses indicated that L2 speakers, like L1 speakers, showed significantly increased activation for simple motor compared to non-motor verbs in motor and somatosensory regions. This effect was not restricted to Dutch-German cognate verbs, but was also present for non-cognate verbs. These results indicate that L2 semantic representations are rich enough for motor-related activations to develop in motor and somatosensory areas. -
De Grauwe, S., Lemhöfer, K., Willems, R. M., & Schriefers, H. (2014). L2 speakers decompose morphologically complex verbs: fMRI evidence from priming of transparent derived verbs. Frontiers in Human Neuroscience, 8: 802. doi:10.3389/fnhum.2014.00802.
Abstract
In this functional magnetic resonance imaging (fMRI) long-lag priming study, we investigated the processing of Dutch semantically transparent, derived prefix verbs. In such words, the meaning of the word as a whole can be deduced from the meanings of its parts, e.g., wegleggen “put aside.” Many behavioral and some fMRI studies suggest that native (L1) speakers decompose transparent derived words. The brain region usually implicated in morphological decomposition is the left inferior frontal gyrus (LIFG). In non-native (L2) speakers, the processing of transparent derived words has hardly been investigated, especially in fMRI studies, and results are contradictory: some studies find more reliance on holistic (i.e., non-decompositional) processing by L2 speakers; some find no difference between L1 and L2 speakers. In this study, we wanted to find out whether Dutch transparent derived prefix verbs are decomposed or processed holistically by German L2 speakers of Dutch. Half of the derived verbs (e.g., omvallen “fall down”) were preceded by their stem (e.g., vallen “fall”) with a lag of 4–6 words (“primed”); the other half (e.g., inslapen “fall asleep”) were not (“unprimed”). L1 and L2 speakers of Dutch made lexical decisions on these visually presented verbs. Both region of interest analyses and whole-brain analyses showed that there was a significant repetition suppression effect for primed compared to unprimed derived verbs in the LIFG. This was true both for the analyses over L2 speakers only and for the analyses over the two language groups together. The latter did not reveal any interaction with language group (L1 vs. L2) in the LIFG. Thus, L2 speakers show a clear priming effect in the LIFG, an area that has been associated with morphological decomposition. Our findings are consistent with the idea that L2 speakers engage in decomposition of transparent derived verbs rather than processing them holisticallyAdditional information
Data Sheet 1.docx -
Guadalupe, T., Willems, R. M., Zwiers, M., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Franke, B., Fisher, S. E., & Francks, C. (2014). Differences in cerebral cortical anatomy of left- and right-handers. Frontiers in Psychology, 5: 261. doi:10.3389/fpsyg.2014.00261.
Abstract
The left and right sides of the human brain are specialized for different kinds of information processing, and much of our cognition is lateralized to an extent towards one side or the other. Handedness is a reflection of nervous system lateralization. Roughly ten percent of people are mixed- or left-handed, and they show an elevated rate of reductions or reversals of some cerebral functional asymmetries compared to right-handers. Brain anatomical correlates of left-handedness have also been suggested. However, the relationships of left-handedness to brain structure and function remain far from clear. We carried out a comprehensive analysis of cortical surface area differences between 106 left-handed subjects and 1960 right-handed subjects, measured using an automated method of regional parcellation (FreeSurfer, Destrieux atlas). This is the largest study sample that has so far been used in relation to this issue. No individual cortical region showed an association with left-handedness that survived statistical correction for multiple testing, although there was a nominally significant association with the surface area of a previously implicated region: the left precentral sulcus. Identifying brain structural correlates of handedness may prove useful for genetic studies of cerebral asymmetries, as well as providing new avenues for the study of relations between handedness, cerebral lateralization and cognition. -
Guadalupe, T., Zwiers, M. P., Teumer, A., Wittfeld, K., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S. E., Grabe, H. J., & Francks, C. (2014). Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Human Brain Mapping, 35(7), 3277-3289. doi:10.1002/hbm.22401.
Abstract
Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P < 5 × 10-8). There was no enrichment of genetic association in genes involved in left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries -
Hagoort, P. (2014). Introduction to section on language and abstract thought. In M. S. Gazzaniga, & G. R. Mangun (
Eds. ), The cognitive neurosciences (5th ed., pp. 615-618). Cambridge, Mass: MIT Press. -
Hagoort, P., & Levinson, S. C. (2014). Neuropragmatics. In M. S. Gazzaniga, & G. R. Mangun (
Eds. ), The cognitive neurosciences (5th ed., pp. 667-674). Cambridge, Mass: MIT Press. -
Hagoort, P. (2014). Nodes and networks in the neural architecture for language: Broca's region and beyond. Current Opinion in Neurobiology, 28, 136-141. doi:10.1016/j.conb.2014.07.013.
Abstract
Current views on the neurobiological underpinnings of language are discussed that deviate in a number of ways from the classical Wernicke–Lichtheim–Geschwind model. More areas than Broca's and Wernicke's region are involved in language. Moreover, a division along the axis of language production and language comprehension does not seem to be warranted. Instead, for central aspects of language processing neural infrastructure is shared between production and comprehension. Three different accounts of the role of Broca's area in language are discussed. Arguments are presented in favor of a dynamic network view, in which the functionality of a region is co-determined by the network of regions in which it is embedded at particular moments in time. Finally, core regions of language processing need to interact with other networks (e.g. the attentional networks and the ToM network) to establish full functionality of language and communication. -
Hagoort, P., & Indefrey, P. (2014). The neurobiology of language beyond single words. Annual Review of Neuroscience, 37, 347-362. doi:10.1146/annurev-neuro-071013-013847.
Abstract
A hallmark of human language is that we combine lexical building blocks retrieved from memory in endless new ways. This combinatorial aspect of language is referred to as unification. Here we focus on the neurobiological infrastructure for syntactic and semantic unification. Unification is characterized by a high-speed temporal profile including both prediction and integration of retrieved lexical elements. A meta-analysis of numerous neuroimaging studies reveals a clear dorsal/ventral gradient in both left inferior frontal cortex and left posterior temporal cortex, with dorsal foci for syntactic processing and ventral foci for semantic processing. In addition to core areas for unification, further networks need to be recruited to realize language-driven communication to its full extent. One example is the theory of mind network, which allows listeners and readers to infer the intended message (speaker meaning) from the coded meaning of the linguistic utterance. This indicates that sensorimotor simulation cannot handle all of language processing.Additional information
http://www.annualreviews.org/doi/suppl/10.1146/annurev-neuro-071013-013847 -
Heyselaar, E., Hagoort, P., & Segaert, K. (2014). In dialogue with an avatar, syntax production is identical compared to dialogue with a human partner. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (
Eds. ), Proceedings of the 36th Annual Meeting of the Cognitive Science Society (CogSci 2014) (pp. 2351-2356). Austin, Tx: Cognitive Science Society.Abstract
The use of virtual reality (VR) as a methodological tool is
becoming increasingly popular in behavioural research due
to its seemingly limitless possibilities. This new method has
not been used frequently in the field of psycholinguistics,
however, possibly due to the assumption that humancomputer
interaction does not accurately reflect human-human
interaction. In the current study we compare participants’
language behaviour in a syntactic priming task with human
versus avatar partners. Our study shows comparable priming
effects between human and avatar partners (Human: 12.3%;
Avatar: 12.6% for passive sentences) suggesting that VR is a
valid platform for conducting language research and studying
dialogue interactions. -
Holler, J., Schubotz, L., Kelly, S., Hagoort, P., Schuetze, M., & Ozyurek, A. (2014). Social eye gaze modulates processing of speech and co-speech gesture. Cognition, 133, 692-697. doi:10.1016/j.cognition.2014.08.008.
Abstract
In human face-to-face communication, language comprehension is a multi-modal, situated activity. However, little is known about how we combine information from different modalities during comprehension, and how perceived communicative intentions, often signaled through visual signals, influence this process. We explored this question by simulating a multi-party communication context in which a speaker alternated her gaze between two recipients. Participants viewed speech-only or speech + gesture object-related messages when being addressed (direct gaze) or unaddressed (gaze averted to other participant). They were then asked to choose which of two object images matched the speaker’s preceding message. Unaddressed recipients responded significantly more slowly than addressees for speech-only utterances. However, perceiving the same speech accompanied by gestures sped unaddressed recipients up to a level identical to that of addressees. That is, when unaddressed recipients’ speech processing suffers, gestures can enhance the comprehension of a speaker’s message. We discuss our findings with respect to two hypotheses attempting to account for how social eye gaze may modulate multi-modal language comprehension. -
Junge, C., Cutler, A., & Hagoort, P. (2014). Successful word recognition by 10-month-olds given continuous speech both at initial exposure and test. Infancy, 19(2), 179-193. doi:10.1111/infa.12040.
Abstract
Most words that infants hear occur within fluent speech. To compile a vocabulary, infants therefore need to segment words from speech contexts. This study is the first to investigate whether infants (here: 10-month-olds) can recognize words when both initial exposure and test presentation are in continuous speech. Electrophysiological evidence attests that this indeed occurs: An increased extended negativity (word recognition effect) appears for familiarized target words relative to control words. This response proved constant at the individual level: Only infants who showed this negativity at test had shown such a response, within six repetitions after first occurrence, during familiarization. -
Keller, K. L., Fritz, R. S., Zoubek, C. M., Kennedy, E. H., Cronin, K. A., Rothwell, E. S., & Serfass, T. L. (2014). Effects of transport on fecal glucocorticoid levels in captive-bred cotton-top tamarins (Saguinus oedipus). Journal of the Pennsylvania Academy of Science, 88(2), 84-88.
Abstract
The relocation of animals can induce stress when animals are placed in novel environmental conditions. The movement of captive animals among facilities is common, especially for non-human primates used in research. The stress response begins with the activation of the hypothalamic-pituitary-adrenal (HPA) axis which results in the release of glucocorticoid hormones (GC), which at chronic levels could lead to deleterious physiological effects. There is a substantial body of data concerning GC levels affecting reproduction, and rank and aggression in primates. However, the effect of transport has received much less attention. Fecal samples from eight (four male and four female) captive-bred cotton-top tamarins (Saguinus oedipus) were collected at four different time points (two pre-transport and two post-transport). The fecal samples were analyzed using an immunoassay to determine GC levels. A repeated measures analysis of variance (ANOVA) demonstrated that GC levels differed among transport times (p = 0.009), but not between sexes (p = 0.963). Five of the eight tamarins exhibited an increase in GC levels after transport. Seven of the eight tamarins exhibited a decrease in GC levels from three to six days post-transport to three weeks post-transport. Most values returned to pre-transport levels after three weeks. The results indicate that these tamarins experienced elevated GC levels following transport, but these increases were of short duration. This outcome would suggest that the negative effects of elevated GC levels were also of short duration. -
Kok, P. (2014). On the role of expectation in visual perception: A top-down view of early visual cortex. PhD Thesis, Radboud University Nijmegen, Nijmegen.
-
Kunert, R., & Scheepers, C. (2014). Speed and accuracy of dyslexic versus typical word recognition: An eye-movement investigation. Frontiers in Psychology, 5: 1129. doi:10.3389/fpsyg.2014.01129.
Abstract
Developmental dyslexia is often characterized by a dual deficit in both word recognition accuracy and general processing speed. While previous research into dyslexic word recognition may have suffered from speed-accuracy trade-off, the present study employed a novel eye-tracking task that is less prone to such confounds. Participants (10 dyslexics and 12 controls) were asked to look at real word stimuli, and to ignore simultaneously presented non-word stimuli, while their eye-movements were recorded. Improvements in word recognition accuracy over time were modeled in terms of a continuous non-linear function. The words' rhyme consistency and the non-words' lexicality (unpronounceable, pronounceable, pseudohomophone) were manipulated within-subjects. Speed-related measures derived from the model fits confirmed generally slower processing in dyslexics, and showed a rhyme consistency effect in both dyslexics and controls. In terms of overall error rate, dyslexics (but not controls) performed less accurately on rhyme-inconsistent words, suggesting a representational deficit for such words in dyslexics. Interestingly, neither group showed a pseudohomophone effect in speed or accuracy, which might call the task-independent pervasiveness of this effect into question. The present results illustrate the importance of distinguishing between speed- vs. accuracy-related effects for our understanding of dyslexic word recognitionAdditional information
Kunert_Data Sheet 1.DOCX -
Lai, V. T., Garrido Rodriguez, G., & Narasimhan, B. (2014). Thinking-for-speaking in early and late bilinguals. Bilingualism: Language and Cognition, 17, 139-152. doi:10.1017/S1366728913000151.
Abstract
When speakers describe motion events using different languages, they subsequently classify those events in language-specific ways (Gennari, Sloman, Malt & Fitch, 2002). Here we ask if bilingual speakers flexibly shift their event classification preferences based on the language in which they verbally encode those events. English–Spanish bilinguals and monolingual controls described motion events in either Spanish or English. Subsequently they judged the similarity of the motion events in a triad task. Bilinguals tested in Spanish and Spanish monolinguals were more likely to make similarity judgments based on the path of motion versus bilinguals tested in English and English monolinguals. The effect is modulated in bilinguals by the age of acquisition of the second language. Late bilinguals based their judgments on path more often when Spanish was used to describe the motion events versus English. Early bilinguals had a path preference independent of the language in use. These findings support “thinking-for-speaking” (Slobin, 1996) in late bilinguals. -
Lartseva, A., Dijkstra, T., Kan, C. C., & Buitelaar, J. K. (2014). Processing of emotion words by patients with Autism Spectrum Disorders: Evidence from reaction times and EEG. Journal of Autism and Developmental Disorders, 44, 2882-2894. doi:10.1007/s10803-014-2149-z.
Abstract
This study investigated processing of emotion words in autism spectrum disorders (ASD) using reaction times and event-related potentials (ERP). Adults with (n = 21) and without (n = 20) ASD performed a lexical decision task on emotion and neutral words while their brain activity was recorded. Both groups showed faster responses to emotion words compared to neutral, suggesting intact early processing of emotion in ASD. In the ERPs, the control group showed a typical late positive component (LPC) at 400-600 ms for emotion words compared to neutral, while the ASD group showed no LPC. The between-group difference in LPC amplitude was significant, suggesting that emotion words were processed differently by individuals with ASD, although their behavioral performance was similar to that of typical individuals -
Levy, J., Hagoort, P., & Démonet, J.-F. (2014). A neuronal gamma oscillatory signature during morphological unification in the left occipitotemporal junction. Human Brain Mapping, 35, 5847-5860. doi:10.1002/hbm.22589.
Abstract
Morphology is the aspect of language concerned with the internal structure of words. In the past decades, a large body of masked priming (behavioral and neuroimaging) data has suggested that the visual word recognition system automatically decomposes any morphologically complex word into a stem and its constituent morphemes. Yet the reliance of morphology on other reading processes (e.g., orthography and semantics), as well as its underlying neuronal mechanisms are yet to be determined. In the current magnetoencephalography study, we addressed morphology from the perspective of the unification framework, that is, by applying the Hold/Release paradigm, morphological unification was simulated via the assembly of internal morphemic units into a whole word. Trials representing real words were divided into words with a transparent (true) or a nontransparent (pseudo) morphological relationship. Morphological unification of truly suffixed words was faster and more accurate and additionally enhanced induced oscillations in the narrow gamma band (60–85 Hz, 260–440 ms) in the left posterior occipitotemporal junction. This neural signature could not be explained by a mere automatic lexical processing (i.e., stem perception), but more likely it related to a semantic access step during the morphological unification process. By demonstrating the validity of unification at the morphological level, this study contributes to the vast empirical evidence on unification across other language processes. Furthermore, we point out that morphological unification relies on the retrieval of lexical semantic associations via induced gamma band oscillations in a cerebral hub region for visual word form processing. -
Lüttjohann, A., Schoffelen, J.-M., & Van Luijtelaar, G. (2014). Termination of ongoing spike-wave discharges investigated by cortico-thalamic network analyses. Neurobiology of Disease, 70, 127-137. doi:10.1016/j.nbd.2014.06.007.
Abstract
Purpose While decades of research were devoted to study generation mechanisms of spontaneous spike and wave discharges (SWD), little attention has been paid to network mechanisms associated with the spontaneous termination of SWD. In the current study coupling-dynamics at the onset and termination of SWD were studied in an extended part of the cortico-thalamo-cortical system of freely moving, genetic absence epileptic WAG/Rij rats. Methods Local-field potential recordings of 16 male WAG/Rij rats, equipped with multiple electrodes targeting layer 4 to 6 of the somatosensory-cortex (ctx4, ctx5, ctx6), rostral and caudal reticular thalamic nucleus (rRTN & cRTN), Ventral Postero Medial (VPM), anterior- (ATN) and posterior (Po) thalamic nucleus, were obtained. Six seconds lasting pre-SWD->SWD, SWD->post SWD and control periods were analyzed with time-frequency methods and between-region interactions were quantified with frequencyresolved Granger Causality (GC) analysis. Results Most channel-pairs showed increases in GC lasting from onset to offset of the SWD. While for most thalamo-thalamic pairs a dominant coupling direction was found during the complete SWD, most cortico-thalamic pairs only showed a dominant directional drive (always from cortex to thalamus) during the first 500ms of SWD. Channel-pair ctx4-rRTN showed a longer lasting dominant cortical drive, which stopped 1.5 sec prior to SWD offset. This early decrease in directional coupling was followed by an increase in directional coupling from cRTN to rRTN 1 sec prior to SWD offset. For channel pairs ctx5-Po and ctx6-Po the heightened cortex->thalamus coupling remained until 1.5 sec following SWD offset, while the thalamus->cortex coupling for these pairs stopped at SWD offset. Conclusion The high directional coupling from somatosensory cortex to the thalamus at SWD onset is in good agreement with the idea of a cortical epileptic focus that initiates and entrains other brain structures into seizure activity. The decrease of cortex to rRTN coupling as well as the increased coupling from cRTN to rRTN preceding SWD termination demonstrate that SWD termination is a gradual process that involves both cortico-thalamic as well as intrathalamic processes. The rostral RTN seems to be an important resonator for SWD and relevant for maintenance, while the cRTN might inhibit this oscillation. The somatosensory cortex seems to attempt to reinitiate SWD following its offset via its strong coupling to the posterior thalamus. -
Magyari, L., Bastiaansen, M. C. M., De Ruiter, J. P., & Levinson, S. C. (2014). Early anticipation lies behind the speed of response in conversation. Journal of Cognitive Neuroscience, 26(11), 2530-2539. doi:10.1162/jocn_a_00673.
Abstract
RTs in conversation, with average gaps of 200 msec and often less, beat standard RTs, despite the complexity of response and the lag in speech production (600 msec or more). This can only be achieved by anticipation of timing and content of turns in conversation, about which little is known. Using EEG and an experimental task with conversational stimuli, we show that estimation of turn durations are based on anticipating the way the turn would be completed. We found a neuronal correlate of turn-end anticipation localized in ACC and inferior parietal lobule, namely a beta-frequency desynchronization as early as 1250 msec, before the end of the turn. We suggest that anticipation of the other's utterance leads to accurately timed transitions in everyday conversations. -
Pacheco, A., Araújo, S., Faísca, L., de Castro, S. L., Petersson, K. M., & Reis, A. (2014). Dyslexia's heterogeneity: Cognitive profiling of Portuguese children with dyslexia. Reading and Writing, 27(9), 1529-1545. doi:10.1007/s11145-014-9504-5.
Abstract
Recent studies have emphasized that developmental dyslexia is a multiple-deficit disorder, in contrast to the traditional single-deficit view. In this context, cognitive profiling of children with dyslexia may be a relevant contribution to this unresolved discussion. The aim of this study was to profile 36 Portuguese children with dyslexia from the 2nd to 5th grade. Hierarchical cluster analysis was used to group participants according to their phonological awareness, rapid automatized naming, verbal short-term memory, vocabulary, and nonverbal intelligence abilities. The results suggested a two-cluster solution: a group with poorer performance on phoneme deletion and rapid automatized naming compared with the remaining variables (Cluster 1) and a group characterized by underperforming on the variables most related to phonological processing (phoneme deletion and digit span), but not on rapid automatized naming (Cluster 2). Overall, the results seem more consistent with a hybrid perspective, such as that proposed by Pennington and colleagues (2012), for understanding the heterogeneity of dyslexia. The importance of characterizing the profiles of individuals with dyslexia becomes clear within the context of constructing remediation programs that are specifically targeted and are more effective in terms of intervention outcome.Additional information
11145_2014_9504_MOESM1_ESM.doc -
Peeters, D., Runnqvist, E., Bertrand, D., & Grainger, J. (2014). Asymmetrical switch costs in bilingual language production induced by reading words. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(1), 284-292. doi:10.1037/a0034060.
Abstract
We examined language-switching effects in French–English bilinguals using a paradigm where pictures are always named in the same language (either French or English) within a block of trials, and on each trial, the picture is preceded by a printed word from the same language or from the other language. Participants had to either make a language decision on the word or categorize it as an animal name or not. Picture-naming latencies in French (Language 1 [L1]) were slower when pictures were preceded by an English word than by a French word, independently of the task performed on the word. There were no language-switching effects when pictures were named in English (L2). This pattern replicates asymmetrical switch costs found with the cued picture-naming paradigm and shows that the asymmetrical pattern can be obtained (a) in the absence of artificial (nonlinguistic) language cues, (b) when the switch involves a shift from comprehension in 1 language to production in another, and (c) when the naming language is blocked (univalent response). We concluded that language switch costs in bilinguals cannot be reduced to effects driven by task control or response-selection mechanisms. -
Peeters, D., & Dresler, M. (2014). The scientific significance of sleep-talking. Frontiers for Young Minds, 2(9). Retrieved from http://kids.frontiersin.org/articles/24/the_scientific_significance_of_sleep_talking/.
Abstract
Did one of your parents, siblings, or friends ever tell you that you were talking in your sleep? Nothing to be ashamed of! A recent study found that more than half of all people have had the experience of speaking out loud while being asleep [1]. This might even be underestimated, because often people do not notice that they are sleep-talking, unless somebody wakes them up or tells them the next day. Most neuroscientists, linguists, and psychologists studying language are interested in our language production and language comprehension skills during the day. In the present article, we will explore what is known about the production of overt speech during the night. We suggest that the study of sleep-talking may be just as interesting and informative as the study of wakeful speech. -
Peeters, D., Azar, Z., & Ozyurek, A. (2014). The interplay between joint attention, physical proximity, and pointing gesture in demonstrative choice. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (
Eds. ), Proceedings of the 36th Annual Meeting of the Cognitive Science Society (CogSci 2014) (pp. 1144-1149). Austin, Tx: Cognitive Science Society. -
Piai, V., Roelofs, A., Jensen, O., Schoffelen, J.-M., & Bonnefond, M. (2014). Distinct patterns of brain activity characterise lexical activation and competition in spoken word production. PLoS One, 9(2): e88674. doi:10.1371/journal.pone.0088674.
Abstract
According to a prominent theory of language production, concepts activate multiple associated words in memory, which enter into competition for selection. However, only a few electrophysiological studies have identified brain responses reflecting competition. Here, we report a magnetoencephalography study in which the activation of competing words was manipulated by presenting pictures (e.g., dog) with distractor words. The distractor and picture name were semantically related (cat), unrelated (pin), or identical (dog). Related distractors are stronger competitors to the picture name because they receive additional activation from the picture relative to other distractors. Picture naming times were longer with related than unrelated and identical distractors. Phase-locked and non-phase-locked activity were distinct but temporally related. Phase-locked activity in left temporal cortex, peaking at 400 ms, was larger on unrelated than related and identical trials, suggesting differential activation of alternative words by the picture-word stimuli. Non-phase-locked activity between roughly 350–650 ms (4–10 Hz) in left superior frontal gyrus was larger on related than unrelated and identical trials, suggesting differential resolution of the competition among the alternatives, as reflected in the naming times. These findings characterise distinct patterns of activity associated with lexical activation and competition, supporting the theory that words are selected by competition.Additional information
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0088674#s5 -
Schoffelen, J.-M., & Gross, J. (2014). Studying dynamic neural interactions with MEG. In S. Supek, & C. J. Aine (
Eds. ), Magnetoencephalography: From signals to dynamic cortical networks (pp. 405-427). Berlin: Springer. -
Schoot, L., Menenti, L., Hagoort, P., & Segaert, K. (2014). A little more conversation - The influence of communicative context on syntactic priming in brain and behavior. Frontiers in Psychology, 5: 208. doi:10.3389/fpsyg.2014.00208.
Abstract
We report on an fMRI syntactic priming experiment in which we measure brain activity for participants who communicate with another participant outside the scanner. We investigated whether syntactic processing during overt language production and comprehension is influenced by having a (shared) goal to communicate. Although theory suggests this is true, the nature of this influence remains unclear. Two hypotheses are tested: i. syntactic priming effects (fMRI and RT) are stronger for participants in the communicative context than for participants doing the same experiment in a non-communicative context, and ii. syntactic priming magnitude (RT) is correlated with the syntactic priming magnitude of the speaker’s communicative partner. Results showed that across conditions, participants were faster to produce sentences with repeated syntax, relative to novel syntax. This behavioral result converged with the fMRI data: we found repetition suppression effects in the left insula extending into left inferior frontal gyrus (BA 47/45), left middle temporal gyrus (BA 21), left inferior parietal cortex (BA 40), left precentral gyrus (BA 6), bilateral precuneus (BA 7), bilateral supplementary motor cortex (BA 32/8) and right insula (BA 47). We did not find support for the first hypothesis: having a communicative intention does not increase the magnitude of syntactic priming effects (either in the brain or in behavior) per se. We did find support for the second hypothesis: if speaker A is strongly/weakly primed by speaker B, then speaker B is primed by speaker A to a similar extent. We conclude that syntactic processing is influenced by being in a communicative context, and that the nature of this influence is bi-directional: speakers are influenced by each other. -
Segaert, K., Weber, K., Cladder-Micus, M., & Hagoort, P. (2014). The influence of verb-bound syntactic preferences on the processing of syntactic structures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(5), 1448-1460. doi:10.1037/a0036796.
Abstract
Speakers sometimes repeat syntactic structures across sentences, a phenomenon called syntactic priming. We investigated the influence of verb-bound syntactic preferences on syntactic priming effects in response choices and response latencies for German ditransitive sentences. In the response choices we found inverse preference effects: There were stronger syntactic priming effects for primes in the less preferred structure, given the syntactic preference of the prime verb. In the response latencies we found positive preference effects: There were stronger syntactic priming effects for primes in the more preferred structure, given the syntactic preference of the prime verb. These findings provide further support for the idea that syntactic processing is lexically guided. -
Shao, Z., Roelofs, A., Acheson, D. J., & Meyer, A. S. (2014). Electrophysiological evidence that inhibition supports lexical selection in picture naming. Brain Research, 1586, 130-142. doi:10.1016/j.brainres.2014.07.009.
Abstract
We investigated the neural basis of inhibitory control during lexical selection. Participants overtly named pictures while response times (RTs) and event-related brain potentials (ERPs) were recorded. The difficulty of lexical selection was manipulated by using object and action pictures with high name agreement (few response candidates) versus low name agreement (many response candidates). To assess the involvement of inhibition, we conducted delta plot analyses of naming RTs and examined the N2 component of the ERP. We found longer mean naming RTs and a larger N2 amplitude in the low relative to the high name agreement condition. For action naming we found a negative correlation between the slopes of the slowest delta segment and the difference in N2 amplitude between the low and high name agreement conditions. The converging behavioral and electrophysiological evidence suggests that selective inhibition is engaged to reduce competition during lexical selection in picture naming. -
Silva, S., Branco, P., Barbosa, F., Marques-Teixeira, J., Petersson, K. M., & Castro, S. L. (2014). Musical phrase boundaries, wrap-up and the closure positive shift. Brain Research, 1585, 99-107. doi:10.1016/j.brainres.2014.08.025.
Abstract
We investigated global integration (wrap-up) processes at the boundaries of musical phrases by comparing the effects of well and non-well formed phrases on event-related potentials time-locked to two boundary points: the onset and the offset of the boundary pause. The Closure Positive Shift, which is elicited at the boundary offset, was not modulated by the quality of phrase structure (well vs. non-well formed). In contrast, the boundary onset potentials showed different patterns for well and non-well formed phrases. Our results contribute to specify the functional meaning of the Closure Positive Shift in music, shed light on the large-scale structural integration of musical input, and raise new hypotheses concerning shared resources between music and language. -
Silva, S., Barbosa, F., Marques-Teixeira, J., Petersson, K. M., & Castro, S. L. (2014). You know when: Event-related potentials and theta/beat power indicate boundary prediction in music. Journal of Integrative Neuroscience, 13(1), 19-34. doi:10.1142/S0219635214500022.
Abstract
Neuroscientific and musicological approaches to music cognition indicate that listeners familiarized in the Western tonal tradition expect a musical phrase boundary at predictable time intervals. However, phrase boundary prediction processes in music remain untested. We analyzed event-related potentials (ERPs) and event-related induced power changes at the onset and offset of a boundary pause. We made comparisons with modified melodies, where the pause was omitted and filled by tones. The offset of the pause elicited a closure positive shift (CPS), indexing phrase boundary detection. The onset of the filling tones elicited significant increases in theta and beta powers. In addition, the P2 component was larger when the filling tones started than when they ended. The responses to boundary omission suggest that listeners expected to hear a boundary pause. Therefore, boundary prediction seems to coexist with boundary detection in music segmentation. -
Simanova, I. (2014). In search of conceptual representations in the brain: Towards mind-reading. PhD Thesis, Radboud University Nijmegen, Nijmegen.
-
Simanova, I., Hagoort, P., Oostenveld, R., & Van Gerven, M. A. J. (2014). Modality-independent decoding of semantic information from the human brain. Cerebral Cortex, 24, 426-434. doi:10.1093/cercor/bhs324.
Abstract
An ability to decode semantic information from fMRI spatial patterns has been demonstrated in previous studies mostly for 1 specific input modality. In this study, we aimed to decode semantic category independent of the modality in which an object was presented. Using a searchlight method, we were able to predict the stimulus category from the data while participants performed a semantic categorization task with 4 stimulus modalities (spoken and written names, photographs, and natural sounds). Significant classification performance was achieved in all 4 modalities. Modality-independent decoding was implemented by training and testing the searchlight method across modalities. This allowed the localization of those brain regions, which correctly discriminated between the categories, independent of stimulus modality. The analysis revealed large clusters of voxels in the left inferior temporal cortex and in frontal regions. These voxels also allowed category discrimination in a free recall session where subjects recalled the objects in the absence of external stimuli. The results show that semantic information can be decoded from the fMRI signal independently of the input modality and have clear implications for understanding the functional mechanisms of semantic memory.Additional information
http://cercor.oxfordjournals.org/content/early/2012/10/11/cercor.bhs324/suppl/D… -
Stolk, A., Noordzij, M. L., Verhagen, L., Volman, I., Schoffelen, J.-M., Oostenveld, R., Hagoort, P., & Toni, I. (2014). Cerebral coherence between communicators marks the emergence of meaning. Proceedings of the National Academy of Sciences of the United States of America, 111, 18183-18188. doi:10.1073/pnas.1414886111.
Abstract
How can we understand each other during communicative interactions? An influential suggestion holds that communicators are primed by each other’s behaviors, with associative mechanisms automatically coordinating the production of communicative signals and the comprehension of their meanings. An alternative suggestion posits that mutual understanding requires shared conceptualizations of a signal’s use, i.e., “conceptual pacts” that are abstracted away from specific experiences. Both accounts predict coherent neural dynamics across communicators, aligned either to the occurrence of a signal or to the dynamics of conceptual pacts. Using coherence spectral-density analysis of cerebral activity simultaneously measured in pairs of communicators, this study shows that establishing mutual understanding of novel signals synchronizes cerebral dynamics across communicators’ right temporal lobes. This interpersonal cerebral coherence occurred only within pairs with a shared communicative history, and at temporal scales independent from signals’ occurrences. These findings favor the notion that meaning emerges from shared conceptualizations of a signal’s use.Additional information
http://www.pnas.org/content/suppl/2014/12/04/1414886111.DCSupplemental -
Stolk, A., Noordzij, M. L., Volman, I., Verhagen, L., Overeem, S., van Elswijk, G., Bloem, B., Hagoort, P., & Toni, I. (2014). Understanding communicative actions: A repetitive TMS study. Cortex, 51, 25-34. doi:10.1016/j.cortex.2013.10.005.
Abstract
Despite the ambiguity inherent in human communication, people are remarkably efficient in establishing mutual understanding. Studying how people communicate in novel settings provides a window into the mechanisms supporting the human competence to rapidly generate and understand novel shared symbols, a fundamental property of human communication. Previous work indicates that the right posterior superior temporal sulcus (pSTS) is involved when people understand the intended meaning of novel communicative actions. Here, we set out to test whether normal functioning of this cerebral structure is required for understanding novel communicative actions using inhibitory low-frequency repetitive transcranial magnetic stimulation (rTMS). A factorial experimental design contrasted two tightly matched stimulation sites (right pSTS vs. left MT+, i.e. a contiguous homotopic task-relevant region) and tasks (a communicative task vs. a visual tracking task that used the same sequences of stimuli). Overall task performance was not affected by rTMS, whereas changes in task performance over time were disrupted according to TMS site and task combinations. Namely, rTMS over pSTS led to a diminished ability to improve action understanding on the basis of recent communicative history, while rTMS over MT+ perturbed improvement in visual tracking over trials. These findings qualify the contributions of the right pSTS to human communicative abilities, showing that this region might be necessary for incorporating previous knowledge, accumulated during interactions with a communicative partner, to constrain the inferential process that leads to action understanding. -
Takashima, A., Wagensveld, B., Van Turennout, M., Zwitserlood, P., Hagoort, P., & Verhoeven, L. (2014). Training-induced neural plasticity in visual-word decoding and the role of syllables. Neuropsychologia, 61, 299-314. doi:10.1016/j.neuropsychologia.2014.06.017.
Abstract
To investigate the neural underpinnings of word decoding, and how it changes as a function of repeated exposure, we trained Dutch participants repeatedly over the course of a month of training to articulate a set of novel disyllabic input strings written in Greek script to avoid the use of familiar orthographic representations. The syllables in the input were phonotactically legal combinations but non-existent in the Dutch language, allowing us to assess their role in novel word decoding. Not only trained disyllabic pseudowords were tested but also pseudowords with recombined patterns of syllables to uncover the emergence of syllabic representations. We showed that with extensive training, articulation became faster and more accurate for the trained pseudowords. On the neural level, the initial stage of decoding was reflected by increased activity in visual attention areas of occipito-temporal and occipito-parietal cortices, and in motor coordination areas of the precentral gyrus and the inferior frontal gyrus. After one month of training, memory representations for holistic information (whole word unit) were established in areas encompassing the angular gyrus, the precuneus and the middle temporal gyrus. Syllabic representations also emerged through repeated training of disyllabic pseudowords, such that reading recombined syllables of the trained pseudowords showed similar brain activation to trained pseudowords and were articulated faster than novel combinations of letter strings used in the trained pseudowords. -
Tsuji, S., & Cristia, A. (2014). Perceptual attunement in vowels: A meta-analysis. Developmental Psychobiology, 56(2), 179-191. doi:10.1002/dev.21179.
Abstract
Although the majority of evidence on perceptual narrowing in speech sounds is based on consonants, most models of infant speech perception generalize these findings to vowels, assuming that vowel perception improves for vowel sounds that are present in the infant's native language within the first year of life, and deteriorates for non-native vowel sounds over the same period of time. The present meta-analysis contributes to assessing to what extent these descriptions are accurate in the first comprehensive quantitative meta-analysis of perceptual narrowing in infant vowel discrimination, including results from behavioral, electrophysiological, and neuroimaging methods applied to infants 0–14 months of age. An analysis of effect sizes for native and non-native vowel discrimination over the first year of life revealed that they changed with age in opposite directions, being significant by about 6 months of age -
Van Leeuwen, T. M., Petersson, K. M., Langner, O., Rijpkema, M., & Hagoort, P. (2014). Color specificity in the human V4 complex: An fMRI repetition suppression study. In T. D. Papageorgiou, G. I. Cristopoulous, & S. M. Smirnakis (
Eds. ), Advanced Brain Neuroimaging Topics in Health and Disease - Methods and Applications (pp. 275-295). Rijeka, Croatia: Intech. doi:10.5772/58278. -
Van Leeuwen, T. M., Lamers, M. J. A., Petersson, K. M., Gussenhoven, C., Poser, B., & Hagoort, P. (2014). Phonological markers of information structure: An fMRI study. Neuropsychologia, 58(1), 64-74. doi:10.1016/j.neuropsychologia.2014.03.017.
Abstract
In this fMRI study we investigate the neural correlates of information structure integration during sentence comprehension in Dutch. We looked into how prosodic cues (pitch accents) that signal the information status of constituents to the listener (new information) are combined with other types of information during the unification process. The difficulty of unifying the prosodic cues into overall sentence meaning was manipulated by constructing sentences in which the pitch accent did (focus-accent agreement), and sentences in which the pitch accent did not (focus-accent disagreement) match the expectations for focus constituents of the sentence. In case of a mismatch, the load on unification processes increases. Our results show two anatomically distinct effects of focus-accent disagreement, one located in the posterior left inferior frontal gyrus (LIFG, BA6/44), and one in the more anterior-ventral LIFG (BA 47/45). Our results confirm that information structure is taken into account during unification, and imply an important role for the LIFG in unification processes, in line with previous fMRI studies.Additional information
mmc1.doc -
Veenstra, A., Acheson, D. J., Bock, K., & Meyer, A. S. (2014). Effects of semantic integration on subject–verb agreement: Evidence from Dutch. Language, Cognition and Neuroscience, 29(3), 355-380. doi:10.1080/01690965.2013.862284.
Abstract
The generation of subject–verb agreement is a central component of grammatical encoding. It is sensitive to conceptual and grammatical influences, but the interplay between these factors is still not fully understood. We investigate how semantic integration of the subject noun phrase (‘the secretary of/with the governor’) and the Local Noun Number (‘the secretary with the governor/governors’) affect the ease of selecting the verb form. Two hypotheses are assessed: according to the notional hypothesis, integration encourages the assignment of the singular notional number to the noun phrase and facilitates the choice of the singular verb form. According to the lexical interference hypothesis, integration strengthens the competition between nouns within the subject phrase, making it harder to select the verb form when the nouns mismatch in number. In two experiments, adult speakers of Dutch completed spoken preambles (Experiment 1) or selected appropriate verb forms (Experiment 2). Results showed facilitatory effects of semantic integration (fewer errors and faster responses with increasing integration). These effects did not interact with the effects of the Local Noun Number (slower response times and higher error rates for mismatching than for matching noun numbers). The findings thus support the notional hypothesis and a model of agreement where conceptual and lexical factors independently contribute to the determination of the number of the subject noun phrase and, ultimately, the verb. -
Veenstra, A., Acheson, D. J., & Meyer, A. S. (2014). Keeping it simple: Studying grammatical encoding with lexically-reduced item sets. Frontiers in Psychology, 5: 783. doi:10.3389/fpsyg.2014.00783.
Abstract
Compared to the large body of work on lexical access, little research has been done on grammatical encoding in language production. An exception is the generation of subject-verb agreement. Here, two key findings have been reported: (1) Speakers make more agreement errors when the head and local noun of a phrase mismatch in number than when they match (e.g., the key to the cabinet(s)); and (2) this attraction effect is asymmetric, with stronger attraction for singular than for plural head nouns. Although these findings are robust, the cognitive processes leading to agreement errors and their significance for the generation of correct agreement are not fully understood. We propose that future studies of agreement, and grammatical encoding in general, may benefit from using paradigms that tightly control the variability of the lexical content of the material. We report two experiments illustrating this approach. In both of them, the experimental items featured combinations of four nouns, four color adjectives, and two prepositions. In Experiment 1, native speakers of Dutch described pictures in sentences such as the circle next to the stars is blue. In Experiment 2, they carried out a forced-choice task, where they read subject noun phrases (e.g., the circle next to the stars) and selected the correct verb-phrase (is blue or are blue) with a button press. Both experiments showed an attraction effect, with more errors after subject phrases with mismatching, compared to matching head and local nouns. This effect was stronger for singular than plural heads, replicating the attraction asymmetry. In contrast, the response times recorded in Experiment 2 showed similar attraction effects for singular and plural head nouns. These results demonstrate that critical agreement phenomena can be elicited reliably in lexically-reduced contexts. We discuss the theoretical implications of the findings and the potential and limitations of studies using lexically simple materials. -
Wegman, J., Fonteijn, H. M., van Ekert, J., Tyborowska, A., Jansen, C., & Janzen, G. (2014). Gray and white matter correlates of navigational ability in humans. Human Brain Mapping, 35(6), 2561-2572. doi:10.1002/hbm.22349.
Abstract
Humans differ widely in their navigational abilities. Studies have shown that self-reports on navigational abilities are good predictors of performance on navigation tasks in real and virtual environments. The caudate nucleus and medial temporal lobe regions have been suggested to subserve different navigational strategies. The ability to use different strategies might underlie navigational ability differences. This study examines the anatomical correlates of self-reported navigational ability in both gray and white matter. Local gray matter volume was compared between a group (N = 134) of good and bad navigators using voxel-based morphometry (VBM), as well as regional volumes. To compare between good and bad navigators, we also measured white matter anatomy using diffusion tensor imaging (DTI) and looked at fractional anisotropy (FA) values. We observed a trend toward higher local GM volume in right anterior parahippocampal/rhinal cortex for good versus bad navigators. Good male navigators showed significantly higher local GM volume in right hippocampus than bad male navigators. Conversely, bad navigators showed increased FA values in the internal capsule, the white matter bundle closest to the caudate nucleus and a trend toward higher local GM volume in the caudate nucleus. Furthermore, caudate nucleus regional volume correlated negatively with navigational ability. These convergent findings across imaging modalities are in line with findings showing that the caudate nucleus and the medial temporal lobes are involved in different wayfinding strategies. Our study is the first to show a link between self-reported large-scale navigational abilities and different measures of brain anatomy.Additional information
http://onlinelibrary.wiley.com/doi/10.1002/hbm.22349/suppinfo hbm22349-sup-0001-suppinfo.doc -
Whitmarsh, S., Barendregt, H., Schoffelen, J.-M., & Jensen, O. (2014). Metacognitive awareness of covert somatosensory attention corresponds to contralateral alpha power. NeuroImage, 85(2), 803-809. doi:10.1016/j.neuroimage.2013.07.031.
Abstract
Studies on metacognition have shown that participants can report on their performance on a wide range of perceptual, memory and behavioral tasks. We know little, however, about the ability to report on one's attentional focus. The degree and direction of somatosensory attention can, however, be readily discerned through suppression of alpha band frequencies in EEG/MEG produced by the somatosensory cortex. Such top-down attentional modulations of cortical excitability have been shown to result in better discrimination performance and decreased response times. In this study we asked whether the degree of attentional focus is also accessible for subjective report, and whether such evaluations correspond to the amount of somatosensory alpha activity. In response to auditory cues participants maintained somatosensory attention to either their left or right hand for intervals varying randomly between 5 and 32seconds, while their brain activity was recorded with MEG. Trials were terminated by a probe sound, to which they reported their level of attention on the cued hand right before probe-onset. Using a beamformer approach, we quantified the alpha activity in left and right somatosensory regions, one second before the probe. Alpha activity from contra- and ipsilateral somatosensory cortices for high versus low attention trials were compared. As predicted, the contralateral somatosensory alpha depression correlated with higher reported attentional focus. Finally, alpha activity two to three seconds before the probe-onset was correlated with attentional focus. We conclude that somatosensory attention is indeed accessible to metacognitive awareness. -
Willems, R. M., Van der Haegen, L., Fisher, S. E., & Francks, C. (2014). On the other hand: Including left-handers in cognitive neuroscience and neurogenetics. Nature Reviews Neuroscience, 15, 193-201. doi:10.1038/nrn3679.
Abstract
Left-handers are often excluded from study cohorts in neuroscience and neurogenetics in order to reduce variance in the data. However, recent investigations have shown that the inclusion or targeted recruitment of left-handers can be informative in studies on a range of topics, such as cerebral lateralization and the genetic underpinning of asymmetrical brain development. Left-handed individuals represent a substantial portion of the human population and therefore left-handedness falls within the normal range of human diversity; thus, it is important to account for this variation in our understanding of brain functioning. We call for neuroscientists and neurogeneticists to recognize the potential of studying this often-discarded group of research subjects. -
Willems, R. M., & Francks, C. (2014). Your left-handed brain. Frontiers for Young Minds, 2: 13. doi:10.3389/frym.2014.00013.
Abstract
While most people prefer to use their right hand to brush their teeth, throw a ball, or hold a tennis racket, left-handers prefer to use their left hand. This is the case for around 10 per cent of all people. There was a time (not so long ago) when left-handers were stigmatized in Western (and other) communities: it was considered a bad sign if you were left-handed, and left-handed children were often forced to write with their right hand. This is nonsensical: there is nothing wrong with being left-handed, and trying to write with the non-preferred hand is frustrating for almost everybody. As a matter of fact, science can learn from left-handers, and in this paper, we discuss how this may be the case. We review why some people are left-handed and others are not, how left-handers' brains differ from right-handers’, and why scientists study left-handedness in the first place
Share this page