Displaying 1 - 6 of 6
-
Catani, M., Robertsson, N., Beyh, A., Huynh, V., de Santiago Requejo, F., Howells, H., Barrett, R. L., Aiello, M., Cavaliere, C., Dyrby, T. B., Krug, K., Ptito, M., D'Arceuil, H., Forkel, S. J., & Dell'Acqua, F. (2017). Short parietal lobe connections of the human and monkey brain. Cortex, 97, 339-357. doi:10.1016/j.cortex.2017.10.022.
Abstract
The parietal lobe has a unique place in the human brain. Anatomically, it is at the crossroad between the frontal, occipital, and temporal lobes, thus providing a middle ground for multimodal sensory integration. Functionally, it supports higher cognitive functions that are characteristic of the human species, such as mathematical cognition, semantic and pragmatic aspects of language, and abstract thinking. Despite its importance, a comprehensive comparison of human and simian intraparietal networks is missing.
In this study, we used diffusion imaging tractography to reconstruct the major intralobar parietal tracts in twenty-one datasets acquired in vivo from healthy human subjects and eleven ex vivo datasets from five vervet and six macaque monkeys. Three regions of interest (postcentral gyrus, superior parietal lobule and inferior parietal lobule) were used to identify the tracts. Surface projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain.
The largest tract identified in both human and monkey brains is a vertical pathway between the superior and inferior parietal lobules. This tract can be divided into an anterior (supramarginal gyrus) and a posterior (angular gyrus) component in both humans and monkey brains. The second prominent intraparietal tract connects the postcentral gyrus to both supramarginal and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres in the medial and lateral aspects of the parietal lobe were identified in both species. A tract connecting the medial parietal cortex to the lateral inferior parietal cortex was observed in the monkey brain only.
Our findings suggest a consistent pattern of intralobar parietal connections between humans and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans. -
Forkel, S. J. (2015). Heinrich Sachs (1863–1928). Journal of Neurology, 262, 498-500. doi:10.1007/s00415-014-7517-2.
Abstract
The nineteenth century witnessed some of the greatest neuroanatomists of all times. Amongst them is the largely forgotten Heinrich Sachs, a student of Carl Wernicke in Breslau. -
Forkel, S. J., Mahmood, S., Vergani, F., & Catani, M. (2015). The white matter of the human cerebrum: Part I The occipital lobe by Heinrich Sachs. Cortex, 62, 182-202. doi:10.1016/j.cortex.2014.10.023.
Abstract
This is the first complete translation of Heinrich Sachs' outstanding white matter atlas dedicated to the occipital lobe. This work is accompanied by a prologue by Prof Carl Wernicke who for many years was Sachs' mentor in Breslau and enthusiastically supported his work. -
Catani, M., Craig, M. C., Forkel, S. J., Kanaan, R., Picchioni, M., Toulopoulou, T., Shergill, S., Williams, S., Murphy, D. G., & McGuire, P. (2011). Altered integrity of perisylvian language pathways in schizophrenia: Relationship to auditory hallucinations. Biological Psychiatry, 70(12), 1143-1150. doi:10.1016/j.biopsych.2011.06.013.
Abstract
Background: Functional neuroimaging supports the hypothesis that auditory verbal hallucinations (AVH) in schizophrenia result from altered functional connectivity between perisylvian language regions, although the extent to which AVH are also associated with an altered tract anatomy is less clear.
Methods: Twenty-eight patients with schizophrenia subdivided into 17 subjects with a history of AVH and 11 without a history of hallucinations and 59 age- and IQ-matched healthy controls were recruited. The number of streamlines, fractional anisotropy (FA), and mean diffusivity were measured along the length of the arcuate fasciculus and its medial and lateral components.
Results: Patients with schizophrenia had bilateral reduction of FA relative to controls in the arcuate fasciculi (p < .001). Virtual dissection of the subcomponents of the arcuate fasciculi revealed that these reductions were specific to connections between posterior temporal and anterior regions in the inferior frontal and parietal lobe. Also, compared with controls, the reduction in FA of these tracts was highest, and bilateral, in patients with AVH, but in patients without AVH, this reduction was reported only on the left.
Conclusions: These findings point toward a supraregional network model of AVH in schizophrenia. They support the hypothesis that there may be selective vulnerability of specific anatomical connections to posterior temporal regions in schizophrenia and that extensive bilateral damage is associated with a greater vulnerability to AVH. If confirmed by further studies, these findings may advance our understanding of the anatomical factors that are protective against AVH and predictive of a treatment response. -
Forkel, S. J., Dell’Acqua, F., Kalra, L., Williams, S. C., & Catani, M. (2011). Lateralisation of the Arcuate Fasciculus Predicts Aphasia Recovery at 6 Months. Procedia - Social and Behavioral Sciences, 23, 164-166. doi:10.1016/j.sbspro.2011.09.221.
-
Thiebaut de Schotten, M., Dell'Acqua, F., Forkel, S. J., Simmons, A., Vergani, F., Murphy, D. G. M., & Catani, M. (2011). A lateralized brain network for visuospatial attention. Nature Neuroscience, 14, 1245-1246. doi:10.1038/nn.2905.
Abstract
Right hemisphere dominance for visuospatial attention is characteristic of most humans, but its anatomical basis remains unknown. We report the first evidence in humans for a larger parieto-frontal network in the right than left hemisphere, and a significant correlation between the degree of anatomical lateralization and asymmetry of performance on visuospatial tasks. Our results suggest that hemispheric specialization is associated with an unbalanced speed of visuospatial processing.Additional information
supplementary material
Share this page