Displaying 1 - 6 of 6
-
Forkel, S. J., & Catani, M. (2019). Diffusion imaging methods in language sciences. In G. I. De Zubicaray, & N. O. Schiller (
Eds. ), The Oxford Handbook of Neurolinguistics (pp. 212-228). Oxford: Oxford University Press.Abstract
The field of neuroanatomy of language is moving forward at a fast pace. This
progression is partially due to the development of diffusion tractography, which
has been used to describe white matter connections in the living human brain.
For the field of neurolinguistics this advancement is timely and important for
two reasons. First, it allows clinical researchers to liberate themselves from
neuroanatomical models of language derived from animal studies. Second, for
the first time, it offers the possibility of testing network correlates of
neurolinguistic models directly in the human brain. This chapter introduces the
reader to general principles of diffusion imaging and tractography. Examples of
its applications, such as tract analysis, will be used to explicate its potentials and
limitations. -
Thiebaut de Schotten, M., Friedrich, P., & Forkel, S. J. (2019). One size fits all does not apply to brain lateralisation. Physics of Life Reviews, 30, 30-33. doi:10.1016/j.plrev.2019.07.007.
Abstract
Our understanding of the functioning of the brain is primarily based on an average model of the brain's functional organisation, and any deviation from the standard is considered as random noise or a pathological appearance. Studying pathologies has, however, greatly contributed to our understanding of brain functions. For instance, the study of naturally-occurring or surgically-induced brain lesions revealed that language is predominantly lateralised to the left hemisphere while perception/action and emotion are commonly lateralised to the right hemisphere. The lateralisation of function was subsequently replicated by task-related functional neuroimaging in the healthy population. Despite its high significance and reproducibility, this pattern of lateralisation of function is true for most, but not all participants. Bilateral and flipped representations of classically lateralised functions have been reported during development and in the healthy adult population for language, perception/action and emotion. Understanding these different functional representations at an individual level is crucial to improve the sophistication of our models and account for the variance in developmental trajectories, cognitive performance differences and clinical recovery. With the availability of in vivo neuroimaging, it has become feasible to study large numbers of participants and reliably characterise individual differences, also referred to as phenotypes. Yet, we are at the beginning of inter-individual variability modelling, and new theories of brain function will have to account for these differences across participants. -
Catani, M., Robertsson, N., Beyh, A., Huynh, V., de Santiago Requejo, F., Howells, H., Barrett, R. L., Aiello, M., Cavaliere, C., Dyrby, T. B., Krug, K., Ptito, M., D'Arceuil, H., Forkel, S. J., & Dell'Acqua, F. (2017). Short parietal lobe connections of the human and monkey brain. Cortex, 97, 339-357. doi:10.1016/j.cortex.2017.10.022.
Abstract
The parietal lobe has a unique place in the human brain. Anatomically, it is at the crossroad between the frontal, occipital, and temporal lobes, thus providing a middle ground for multimodal sensory integration. Functionally, it supports higher cognitive functions that are characteristic of the human species, such as mathematical cognition, semantic and pragmatic aspects of language, and abstract thinking. Despite its importance, a comprehensive comparison of human and simian intraparietal networks is missing.
In this study, we used diffusion imaging tractography to reconstruct the major intralobar parietal tracts in twenty-one datasets acquired in vivo from healthy human subjects and eleven ex vivo datasets from five vervet and six macaque monkeys. Three regions of interest (postcentral gyrus, superior parietal lobule and inferior parietal lobule) were used to identify the tracts. Surface projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain.
The largest tract identified in both human and monkey brains is a vertical pathway between the superior and inferior parietal lobules. This tract can be divided into an anterior (supramarginal gyrus) and a posterior (angular gyrus) component in both humans and monkey brains. The second prominent intraparietal tract connects the postcentral gyrus to both supramarginal and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres in the medial and lateral aspects of the parietal lobe were identified in both species. A tract connecting the medial parietal cortex to the lateral inferior parietal cortex was observed in the monkey brain only.
Our findings suggest a consistent pattern of intralobar parietal connections between humans and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans. -
Catani, M., Craig, M. C., Forkel, S. J., Kanaan, R., Picchioni, M., Toulopoulou, T., Shergill, S., Williams, S., Murphy, D. G., & McGuire, P. (2011). Altered integrity of perisylvian language pathways in schizophrenia: Relationship to auditory hallucinations. Biological Psychiatry, 70(12), 1143-1150. doi:10.1016/j.biopsych.2011.06.013.
Abstract
Background: Functional neuroimaging supports the hypothesis that auditory verbal hallucinations (AVH) in schizophrenia result from altered functional connectivity between perisylvian language regions, although the extent to which AVH are also associated with an altered tract anatomy is less clear.
Methods: Twenty-eight patients with schizophrenia subdivided into 17 subjects with a history of AVH and 11 without a history of hallucinations and 59 age- and IQ-matched healthy controls were recruited. The number of streamlines, fractional anisotropy (FA), and mean diffusivity were measured along the length of the arcuate fasciculus and its medial and lateral components.
Results: Patients with schizophrenia had bilateral reduction of FA relative to controls in the arcuate fasciculi (p < .001). Virtual dissection of the subcomponents of the arcuate fasciculi revealed that these reductions were specific to connections between posterior temporal and anterior regions in the inferior frontal and parietal lobe. Also, compared with controls, the reduction in FA of these tracts was highest, and bilateral, in patients with AVH, but in patients without AVH, this reduction was reported only on the left.
Conclusions: These findings point toward a supraregional network model of AVH in schizophrenia. They support the hypothesis that there may be selective vulnerability of specific anatomical connections to posterior temporal regions in schizophrenia and that extensive bilateral damage is associated with a greater vulnerability to AVH. If confirmed by further studies, these findings may advance our understanding of the anatomical factors that are protective against AVH and predictive of a treatment response. -
Forkel, S. J., Dell’Acqua, F., Kalra, L., Williams, S. C., & Catani, M. (2011). Lateralisation of the Arcuate Fasciculus Predicts Aphasia Recovery at 6 Months. Procedia - Social and Behavioral Sciences, 23, 164-166. doi:10.1016/j.sbspro.2011.09.221.
-
Thiebaut de Schotten, M., Dell'Acqua, F., Forkel, S. J., Simmons, A., Vergani, F., Murphy, D. G. M., & Catani, M. (2011). A lateralized brain network for visuospatial attention. Nature Neuroscience, 14, 1245-1246. doi:10.1038/nn.2905.
Abstract
Right hemisphere dominance for visuospatial attention is characteristic of most humans, but its anatomical basis remains unknown. We report the first evidence in humans for a larger parieto-frontal network in the right than left hemisphere, and a significant correlation between the degree of anatomical lateralization and asymmetry of performance on visuospatial tasks. Our results suggest that hemispheric specialization is associated with an unbalanced speed of visuospatial processing.Additional information
supplementary material
Share this page