Displaying 1 - 3 of 3
-
Nozais, V., Forkel, S. J., Petit, L., Talozzi, L., Corbetta, M., Thiebaut de Schotten, M., & Joliot, M. (2023). Atlasing white matter and grey matter joint contributions to resting-state networks in the human brain. Communications Biology, 6: 726. doi:10.1038/s42003-023-05107-3.
Abstract
Over the past two decades, the study of resting-state functional magnetic resonance imaging has revealed that functional connectivity within and between networks is linked to cognitive states and pathologies. However, the white matter connections supporting this connectivity remain only partially described. We developed a method to jointly map the white and grey matter contributing to each resting-state network (RSN). Using the Human Connectome Project, we generated an atlas of 30 RSNs. The method also highlighted the overlap between networks, which revealed that most of the brain’s white matter (89%) is shared between multiple RSNs, with 16% shared by at least 7 RSNs. These overlaps, especially the existence of regions shared by numerous networks, suggest that white matter lesions in these areas might strongly impact the communication within networks. We provide an atlas and an open-source software to explore the joint contribution of white and grey matter to RSNs and facilitate the study of the impact of white matter damage to these networks. In a first application of the software with clinical data, we were able to link stroke patients and impacted RSNs, showing that their symptoms aligned well with the estimated functions of the networks. -
Parlatini, V., Itahashi, T., Lee, Y., Liu, S., Nguyen, T. T., Aoki, Y. Y., Forkel, S. J., Catani, M., Rubia, K., Zhou, J. H., Murphy, D. G., & Cortese, S. (2023). White matter alterations in Attention-Deficit/Hyperactivity Disorder (ADHD): a systematic review of 129 diffusion imaging studies with meta-analysis. Molecular Psychiatry, 28, 4098-4123. doi:10.1038/s41380-023-02173-1.
Abstract
Aberrant anatomical brain connections in attention-deficit/hyperactivity disorder (ADHD) are reported inconsistently across
diffusion weighted imaging (DWI) studies. Based on a pre-registered protocol (Prospero: CRD42021259192), we searched PubMed,
Ovid, and Web of Knowledge until 26/03/2022 to conduct a systematic review of DWI studies. We performed a quality assessment
based on imaging acquisition, preprocessing, and analysis. Using signed differential mapping, we meta-analyzed a subset of the
retrieved studies amenable to quantitative evidence synthesis, i.e., tract-based spatial statistics (TBSS) studies, in individuals of any
age and, separately, in children, adults, and high-quality datasets. Finally, we conducted meta-regressions to test the effect of age,
sex, and medication-naïvety. We included 129 studies (6739 ADHD participants and 6476 controls), of which 25 TBSS studies
provided peak coordinates for case-control differences in fractional anisotropy (FA)(32 datasets) and 18 in mean diffusivity (MD)(23
datasets). The systematic review highlighted white matter alterations (especially reduced FA) in projection, commissural and
association pathways of individuals with ADHD, which were associated with symptom severity and cognitive deficits. The meta-
analysis showed a consistent reduced FA in the splenium and body of the corpus callosum, extending to the cingulum. Lower FA
was related to older age, and case-control differences did not survive in the pediatric meta-analysis. About 68% of studies were of
low quality, mainly due to acquisitions with non-isotropic voxels or lack of motion correction; and the sensitivity analysis in high-
quality datasets yielded no significant results. Findings suggest prominent alterations in posterior interhemispheric connections
subserving cognitive and motor functions affected in ADHD, although these might be influenced by non-optimal acquisition
parameters/preprocessing. Absence of findings in children may be related to the late development of callosal fibers, which may
enhance case-control differences in adulthood. Clinicodemographic and methodological differences were major barriers to
consistency and comparability among studies, and should be addressed in future investigations.Additional information
supplementary information prisma checklist peak coordinates 1 peak coordinates 2 -
Besharati, S., Forkel, S. J., Kopelman, M., Solms, M., Jenkinson, P., & Fotopoulou, A. (2016). Mentalizing the body: Spatial and social cognition in anosognosia for hemiplegia. Brain, 139(3), 971-985. doi:10.1093/brain/awv390.
Abstract
Following right-hemisphere damage, a specific disorder of motor awareness can occur called anosognosia for hemiplegia, i.e. the denial of motor deficits contralateral to a brain lesion. The study of anosognosia can offer unique insights into the neurocognitive basis of awareness. Typically, however, awareness is assessed as a first person judgement and the ability of patients to think about their bodies in more ‘objective’ (third person) terms is not directly assessed. This may be important as right-hemisphere spatial abilities may underlie our ability to take third person perspectives. This possibility was assessed for the first time in the present study. We investigated third person perspective taking using both visuospatial and verbal tasks in right-hemisphere stroke patients with anosognosia ( n = 15) and without anosognosia ( n = 15), as well as neurologically healthy control subjects ( n = 15). The anosognosic group performed worse than both control groups when having to perform the tasks from a third versus a first person perspective. Individual analysis further revealed a classical dissociation between most anosognosic patients and control subjects in mental (but not visuospatial) third person perspective taking abilities. Finally, the severity of unawareness in anosognosia patients was correlated to greater impairments in such third person, mental perspective taking abilities (but not visuospatial perspective taking). In voxel-based lesion mapping we also identified the lesion sites linked with such deficits, including some brain areas previously associated with inhibition, perspective taking and mentalizing, such as the inferior and middle frontal gyri, as well as the supramarginal and superior temporal gyri. These results suggest that neurocognitive deficits in mental perspective taking may contribute to anosognosia and provide novel insights regarding the relation between self-awareness and social cognition.
Share this page