Stephanie Forkel

Publications

Displaying 1 - 5 of 5
  • Nozais, V., Forkel, S. J., Petit, L., Talozzi, L., Corbetta, M., Thiebaut de Schotten, M., & Joliot, M. (2023). Atlasing white matter and grey matter joint contributions to resting-state networks in the human brain. Communications Biology, 6: 726. doi:10.1038/s42003-023-05107-3.

    Abstract

    Over the past two decades, the study of resting-state functional magnetic resonance imaging has revealed that functional connectivity within and between networks is linked to cognitive states and pathologies. However, the white matter connections supporting this connectivity remain only partially described. We developed a method to jointly map the white and grey matter contributing to each resting-state network (RSN). Using the Human Connectome Project, we generated an atlas of 30 RSNs. The method also highlighted the overlap between networks, which revealed that most of the brain’s white matter (89%) is shared between multiple RSNs, with 16% shared by at least 7 RSNs. These overlaps, especially the existence of regions shared by numerous networks, suggest that white matter lesions in these areas might strongly impact the communication within networks. We provide an atlas and an open-source software to explore the joint contribution of white and grey matter to RSNs and facilitate the study of the impact of white matter damage to these networks. In a first application of the software with clinical data, we were able to link stroke patients and impacted RSNs, showing that their symptoms aligned well with the estimated functions of the networks.
  • Parlatini, V., Itahashi, T., Lee, Y., Liu, S., Nguyen, T. T., Aoki, Y. Y., Forkel, S. J., Catani, M., Rubia, K., Zhou, J. H., Murphy, D. G., & Cortese, S. (2023). White matter alterations in Attention-Deficit/Hyperactivity Disorder (ADHD): a systematic review of 129 diffusion imaging studies with meta-analysis. Molecular Psychiatry, 28, 4098-4123. doi:10.1038/s41380-023-02173-1.

    Abstract

    Aberrant anatomical brain connections in attention-deficit/hyperactivity disorder (ADHD) are reported inconsistently across
    diffusion weighted imaging (DWI) studies. Based on a pre-registered protocol (Prospero: CRD42021259192), we searched PubMed,
    Ovid, and Web of Knowledge until 26/03/2022 to conduct a systematic review of DWI studies. We performed a quality assessment
    based on imaging acquisition, preprocessing, and analysis. Using signed differential mapping, we meta-analyzed a subset of the
    retrieved studies amenable to quantitative evidence synthesis, i.e., tract-based spatial statistics (TBSS) studies, in individuals of any
    age and, separately, in children, adults, and high-quality datasets. Finally, we conducted meta-regressions to test the effect of age,
    sex, and medication-naïvety. We included 129 studies (6739 ADHD participants and 6476 controls), of which 25 TBSS studies
    provided peak coordinates for case-control differences in fractional anisotropy (FA)(32 datasets) and 18 in mean diffusivity (MD)(23
    datasets). The systematic review highlighted white matter alterations (especially reduced FA) in projection, commissural and
    association pathways of individuals with ADHD, which were associated with symptom severity and cognitive deficits. The meta-
    analysis showed a consistent reduced FA in the splenium and body of the corpus callosum, extending to the cingulum. Lower FA
    was related to older age, and case-control differences did not survive in the pediatric meta-analysis. About 68% of studies were of
    low quality, mainly due to acquisitions with non-isotropic voxels or lack of motion correction; and the sensitivity analysis in high-
    quality datasets yielded no significant results. Findings suggest prominent alterations in posterior interhemispheric connections
    subserving cognitive and motor functions affected in ADHD, although these might be influenced by non-optimal acquisition
    parameters/preprocessing. Absence of findings in children may be related to the late development of callosal fibers, which may
    enhance case-control differences in adulthood. Clinicodemographic and methodological differences were major barriers to
    consistency and comparability among studies, and should be addressed in future investigations.
  • Forkel, S. J., & Catani, M. (2019). Diffusion imaging methods in language sciences. In G. I. De Zubicaray, & N. O. Schiller (Eds.), The Oxford Handbook of Neurolinguistics (pp. 212-228). Oxford: Oxford University Press.

    Abstract

    The field of neuroanatomy of language is moving forward at a fast pace. This
    progression is partially due to the development of diffusion tractography, which
    has been used to describe white matter connections in the living human brain.
    For the field of neurolinguistics this advancement is timely and important for
    two reasons. First, it allows clinical researchers to liberate themselves from
    neuroanatomical models of language derived from animal studies. Second, for
    the first time, it offers the possibility of testing network correlates of
    neurolinguistic models directly in the human brain. This chapter introduces the
    reader to general principles of diffusion imaging and tractography. Examples of
    its applications, such as tract analysis, will be used to explicate its potentials and
    limitations.
  • Thiebaut de Schotten, M., Friedrich, P., & Forkel, S. J. (2019). One size fits all does not apply to brain lateralisation. Physics of Life Reviews, 30, 30-33. doi:10.1016/j.plrev.2019.07.007.

    Abstract

    Our understanding of the functioning of the brain is primarily based on an average model of the brain's functional organisation, and any deviation from the standard is considered as random noise or a pathological appearance. Studying pathologies has, however, greatly contributed to our understanding of brain functions. For instance, the study of naturally-occurring or surgically-induced brain lesions revealed that language is predominantly lateralised to the left hemisphere while perception/action and emotion are commonly lateralised to the right hemisphere. The lateralisation of function was subsequently replicated by task-related functional neuroimaging in the healthy population. Despite its high significance and reproducibility, this pattern of lateralisation of function is true for most, but not all participants. Bilateral and flipped representations of classically lateralised functions have been reported during development and in the healthy adult population for language, perception/action and emotion. Understanding these different functional representations at an individual level is crucial to improve the sophistication of our models and account for the variance in developmental trajectories, cognitive performance differences and clinical recovery. With the availability of in vivo neuroimaging, it has become feasible to study large numbers of participants and reliably characterise individual differences, also referred to as phenotypes. Yet, we are at the beginning of inter-individual variability modelling, and new theories of brain function will have to account for these differences across participants.
  • Catani, M., Robertsson, N., Beyh, A., Huynh, V., de Santiago Requejo, F., Howells, H., Barrett, R. L., Aiello, M., Cavaliere, C., Dyrby, T. B., Krug, K., Ptito, M., D'Arceuil, H., Forkel, S. J., & Dell'Acqua, F. (2017). Short parietal lobe connections of the human and monkey brain. Cortex, 97, 339-357. doi:10.1016/j.cortex.2017.10.022.

    Abstract

    The parietal lobe has a unique place in the human brain. Anatomically, it is at the crossroad between the frontal, occipital, and temporal lobes, thus providing a middle ground for multimodal sensory integration. Functionally, it supports higher cognitive functions that are characteristic of the human species, such as mathematical cognition, semantic and pragmatic aspects of language, and abstract thinking. Despite its importance, a comprehensive comparison of human and simian intraparietal networks is missing.

    In this study, we used diffusion imaging tractography to reconstruct the major intralobar parietal tracts in twenty-one datasets acquired in vivo from healthy human subjects and eleven ex vivo datasets from five vervet and six macaque monkeys. Three regions of interest (postcentral gyrus, superior parietal lobule and inferior parietal lobule) were used to identify the tracts. Surface projections were reconstructed for both species and results compared to identify similarities or differences in tract anatomy (i.e., trajectories and cortical projections). In addition, post-mortem dissections were performed in a human brain.

    The largest tract identified in both human and monkey brains is a vertical pathway between the superior and inferior parietal lobules. This tract can be divided into an anterior (supramarginal gyrus) and a posterior (angular gyrus) component in both humans and monkey brains. The second prominent intraparietal tract connects the postcentral gyrus to both supramarginal and angular gyri of the inferior parietal lobule in humans but only to the supramarginal gyrus in the monkey brain. The third tract connects the postcentral gyrus to the anterior region of the superior parietal lobule and is more prominent in monkeys compared to humans. Finally, short U-shaped fibres in the medial and lateral aspects of the parietal lobe were identified in both species. A tract connecting the medial parietal cortex to the lateral inferior parietal cortex was observed in the monkey brain only.

    Our findings suggest a consistent pattern of intralobar parietal connections between humans and monkeys with some differences for those areas that have cytoarchitectonically distinct features in humans. The overall pattern of intraparietal connectivity supports the special role of the inferior parietal lobule in cognitive functions characteristic of humans.

Share this page