Displaying 1 - 27 of 27
-
Amunts, K., Axer, M., Banerjee, S., Bitsch, L., Bjaalie, J. G., Brauner, P., Brovelli, A., Calarco, N., Carrere, M., Caspers, S., Charvet, C. J., Cichon, S., Cools, R., Costantini, I., D’Angelo, E. U., Bonis, G. D., Deco, G., DeFelipe, J., Destexhe, A., Dickscheid, T. Amunts, K., Axer, M., Banerjee, S., Bitsch, L., Bjaalie, J. G., Brauner, P., Brovelli, A., Calarco, N., Carrere, M., Caspers, S., Charvet, C. J., Cichon, S., Cools, R., Costantini, I., D’Angelo, E. U., Bonis, G. D., Deco, G., DeFelipe, J., Destexhe, A., Dickscheid, T., Diesmann, M., Düzel, E., Eickhoff, S. B., Einevoll, G., Eke, D., Engel, A. K., Evans, A. C., Evers, K., Fedorchenko, N., Forkel, S. J., Fousek, J., Friederici, A. D., Friston, K., Furber, S., Geris, L., Goebel, R., Güntürkün, O., Hamid, A. I. A., Herold, C., Hilgetag, C. C., Hölter, S. M., Ioannidis, Y., Jirsa, V., Kashyap, S., Kasper, B. S., Kerchove de d’Exaerde, A., Kooijmans, R., Koren, I., Kotaleski, J. H., Kiar, G., Klijn, W., Klüver, L., Knoll, A. C., Krsnik, Z., Kämpfer, J., Larkum, M. E., Linne, M.-L., Lippert, T., Malin Abdullah, J. M., Maio, P. D., Magielse, N., Maquet, P., Mascaro, A. L. A., Marinazzo, D., Mejias, J., Meyer-Lindenberg, A., Migliore, M., Michael, J., Morel, Y., Morin, F. O., Muckli, L., Nagels, G., Oden, L., Palomero-Gallagher, N., Panagiotaropoulos, F., Paolucci, P. S., Pennartz, C., Peeters, L. M., Petkoski, S., Petkov, N., Petro, L. S., Petrovici, M. A., Pezzulo, G., Roelfsema, P., Ris, L., Ritter, P., Rockland, K., Rotter, S., Rowald, A., Ruland, S., Ryvlin, P., Salles, A., Sanchez-Vives, M. V., Schemmel, J., Senn, W., De Sousa, A. A., Ströckens, F., Thirion, B., Uludağ, K., Vanni, S., Van Albada, S. J., Vanduffel, W., Vezoli, J., Vincenz-Donnelly, L., Walter, F., & Zaborszky, L. (2024). The coming decade of digital brain research: A vision for neuroscience at the intersection of technology and computing. Imaging Neuroscience, 2, 1-35. doi:10.1162/imag_a_00137.
Abstract
In recent years, brain research has indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modelling at multiple scales—from molecules to the whole brain. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain combines high-quality research, data integration across multiple scales, a new culture of multidisciplinary large-scale collaboration, and translation into applications. As pioneered in Europe’s Human Brain Project (HBP), a systematic approach will be essential for meeting the coming decade’s pressing medical and technological challenges. The aims of this paper are to: develop a concept for the coming decade of digital brain research, discuss this new concept with the research community at large, identify points of convergence, and derive therefrom scientific common goals; provide a scientific framework for the current and future development of EBRAINS, a research infrastructure resulting from the HBP’s work; inform and engage stakeholders, funding organisations and research institutions regarding future digital brain research; identify and address the transformational potential of comprehensive brain models for artificial intelligence, including machine learning and deep learning; outline a collaborative approach that integrates reflection, dialogues, and societal engagement on ethical and societal opportunities and challenges as part of future neuroscience research. -
Andrulyte, I., De Bezenac, C., Branzi, F., Forkel, S. J., Taylor, P. N., & Keller, S. S. (2024). The relationship between white matter architecture and language lateralisation in the healthy brain. The Journal of Neuroscience, 44(50): e0166242024. doi:10.1523/JNEUROSCI.0166-24.2024.
Abstract
Interhemispheric anatomical asymmetries have long been thought to be related to language lateralisation. Previous studies have explored whether asymmetries in the diffusion characteristics of white matter language tracts are consistent with language lateralisation. These studies, typically with smaller cohorts, yielded mixed results. This study investigated whether connectomic analysis of quantitative anisotropy (QA) and shape features of white matter tracts across the whole brain are associated with language lateralisation. We analysed 1040 healthy individuals from the Human Connectome Project database. Hemispheric language dominance for each participant was quantified using a laterality quotient (LQ) derived from fMRI activation in regions of interest (ROIs) associated with a language comprehension task compared against a math task. A linear regression model was used to examine the relationship between structural asymmetry and functional lateralisation. Connectometry revealed that LQs were significantly negatively correlated with QA of corpus callosum tracts, including forceps minor, body, tapetum, and forceps major, indicating that reduced language dominance (more bilateral language representation) is associated with increased QA in these regions. The QA of the left arcuate fasciculus, cingulum, and right cerebellar tracts was positively associated with LQ, suggesting that stronger structural asymmetry in these tracts may identify left language dominance. Language lateralisation was not significantly associated with the shape metrics (including length, span, curl, elongation, diameter, volume, and surface area) of all white matter tracts. These results suggest that diffusion measures of microstructural architecture, and not the geometric features of reconstructed white matter tracts, are associated with lateralisation of language comprehension functions. People with increased dependence on both cerebral hemispheres for language processing may have more developed commissural fibres, which may support more efficient interhemispheric communication. -
Basile, G. A., Nozais, V., Quartarone, A., Giustiniani, A., Ielo, A., Cerasa, A., Milardi, D., Abdallah, M., Thiebaut de Schotten, M., Forkel, S. J., & Cacciola, A. (2024). Functional anatomy and topographical organization of the frontotemporal arcuate fasciculus. Communications Biology, 7: 1655. doi:10.1038/s42003-024-07274-3.
Abstract
Traditionally, the frontotemporal arcuate fasciculus (AF) is viewed as a single entity in anatomo-clinical models. However, it is unclear if distinct cortical origin and termination patterns within this bundle correspond to specific language functions. We use track-weighted dynamic functional connectivity, a hybrid imaging technique, to study the AF structure and function in two distinct datasets of healthy subjects. Here we show that the AF can be subdivided based on dynamic changes in functional connectivity at the streamline endpoints. An unsupervised parcellation algorithm reveals spatially segregated subunits, which are then functionally quantified through meta-analysis. This approach identifies three distinct clusters within the AF - ventral, middle, and dorsal frontotemporal AF - each linked to different frontal and temporal termination regions and likely involved in various language production and comprehension aspects. Our findings may have relevant implications for the understanding of the functional anatomy of the AF as well as its contribution to linguistic and non-linguistic functions.Additional information
supplementary information -
Della Sala, S., Bathelt, J., Buchtel, H., Tavano, A., Press, C., Love, B., Croy, I., Morris, R., Kotz, S., Kopelman, M. D., Coco, M. I., Reber, P., Forkel, S. J., & Schweinberger, S. R. (2024). The future of science publishing. Cortex, 181, 93-100. doi:10.1016/j.cortex.2024.10.005.
-
Forkel, S. J., & Hagoort, P. (2024). Redefining language networks: Connectivity beyond localised regions. Brain Structure & Function, 229, 2073-2078. doi:10.1007/s00429-024-02859-4.
-
Guzmán Chacón, E., Ovando-Tellez, M., Thiebaut de Schotten, M., & Forkel, S. J. (2024). Embracing digital innovation in neuroscience: 2023 in review at NEUROCCINO. Brain Structure & Function, 229, 251-255. doi:10.1007/s00429-024-02768-6.
-
Hope, T. M. H., Neville, D., Talozzi, L., Foulon, C., Forkel, S. J., Thiebaut de Schotten, M., & Price, C. J. (2024). Testing the disconnectome symptom discoverer model on out-of-sample post-stroke language outcomes. Brain, 147(2), e11-e13. doi:10.1093/brain/awad352.
Abstract
Stroke is common, and its consequent brain damage can cause various cognitive impairments. Associations between where and how much brain lesion damage a patient has suffered, and the particular impairments that injury has caused (lesion-symptom associations) offer potentially compelling insights into how the brain implements cognition.1 A better understanding of those associations can also fill a gap in current stroke medicine by helping us to predict how individual patients might recover from post-stroke impairments.2 Most recent work in this area employs machine learning models trained with data from stroke patients whose mid-to-long-term outcomes are known.2-4 These machine learning models are tested by predicting new outcomes—typically scores on standardized tests of post-stroke impairment—for patients whose data were not used to train the model. Traditionally, these validation results have been shared in peer-reviewed publications describing the model and its training. But recently, and for the first time in this field (as far as we know), one of these pre-trained models has been made public—The Disconnectome Symptom Discoverer model (DSD) which draws its predictors from structural disconnection information inferred from stroke patients’ brain MRI.5
Here, we test the DSD model on wholly independent data, never seen by the model authors, before they published it. Specifically, we test whether its predictive performance is just as accurate as (i.e. not significantly worse than) that reported in the original (Washington University) dataset, when predicting new patients’ outcomes at a similar time post-stroke (∼1 year post-stroke) and also in another independent sample tested later (5+ years) post-stroke. A failure to generalize the DSD model occurs if it performs significantly better in the Washington data than in our data from patients tested at a similar time point (∼1 year post-stroke). In addition, a significant decrease in predictive performance for the more chronic sample would be evidence that lesion-symptom associations differ at ∼1 year post-stroke and >5 years post-stroke. -
Pacella, V., Nozais, V., Talozzi, L., Abdallah, M., Wassermann, D., Forkel, S. J., & Thiebaut de Schotten, M. (2024). The morphospace of the brain-cognition organisation. Nature Communications, 15: 8452. doi:10.1038/s41467-024-52186-9.
Abstract
Over the past three decades, functional neuroimaging has amassed abundant evidence of the intricate interplay between brain structure and function. However, the potential anatomical and experimental overlap, independence, granularity, and gaps between functions remain poorly understood. Here, we show the latent structure of the current brain-cognition knowledge and its organisation. Our approach utilises the most comprehensive meta-analytic fMRI database (Neurosynth) to compute a three-dimensional embedding space–morphospace capturing the relationship between brain functions as we currently understand them. The space structure enables us to statistically test the relationship between functions expressed as the degree to which the characteristics of each functional map can be anticipated based on its similarities with others–the predictability index. The morphospace can also predict the activation pattern of new, unseen functions and decode thoughts and inner states during movie watching. The framework defined by the morphospace will spur the investigation of novel functions and guide the exploration of the fabric of human cognition.Additional information
supplementary material -
Akeret, K., Forkel, S. J., Buzzi, R. M., Vasella, F., Amrein, I., Colacicco, G., Regli, L., Serra, C., & Krayenbühl, N. (2022). Multimodal anatomy of the human forniceal commissure. Communications Biology, 5: 742. doi:10.1038/s42003-022-03692-3.
Abstract
Ambiguity surrounds the existence and morphology of the human forniceal commissure. We combine advanced in-vivo tractography, multidirectional ex-vivo fiber dissection, and multiplanar histological analysis to characterize this structure’s anatomy. Across all 178 subjects, in-vivo fiber dissection based on the Human Connectome Project 7 T MRI data identifies no interhemispheric connections between the crura fornicis. Multidirectional ex-vivo fiber dissection under the operating microscope demonstrates the psalterium as a thin soft-tissue membrane spanning between the right and left crus fornicis, but exposes no commissural fibers. Multiplanar histological analysis with myelin and Bielchowsky silver staining, however, visualizes delicate cruciform fibers extending between the crura fornicis, enclosed by connective tissue, the psalterium. The human forniceal commissure is therefore much more delicate than previously described and presented in anatomical textbooks. This finding is consistent with the observed phylogenetic trend of a reduction of the forniceal commissure in non-human primates compared to non-primate eutherian mammals.Additional information
supplementary material -
Alves, P. N., Forkel, S. J., Corbetta, M., & Thiebaut de Schotten, M. (2022). The subcortical and neurochemical organization of the ventral and dorsal attention networks. Communications Biology, 5: 1343. doi:10.1038/s42003-022-04281-0.
Abstract
Attention is a core cognitive function that filters and selects behaviourally relevant information in the environment. The cortical mapping of attentional systems identified two segregated networks that mediate stimulus-driven and goal-driven processes, the Ventral and the Dorsal Attention Networks (VAN, DAN). Deep brain electrophysiological recordings, behavioral data from phylogenetic distant species, and observations from human brain pathologies challenge purely corticocentric models. Here, we used advanced methods of functional alignment applied to resting-state functional connectivity analyses to map the subcortical architecture of the Ventral and Dorsal Attention Networks. Our investigations revealed the involvement of the pulvinar, the superior colliculi, the head of caudate nuclei, and a cluster of brainstem nuclei relevant to both networks. These nuclei are densely connected structural network hubs, as revealed by diffusion-weighted imaging tractography. Their projections establish interrelations with the acetylcholine nicotinic receptor as well as dopamine and serotonin transporters, as demonstrated in a spatial correlation analysis with a normative atlas of neurotransmitter systems. This convergence of functional, structural, and neurochemical evidence provides a comprehensive framework to understand the neural basis of attention across different species and brain diseases. -
Boraud, T., & Forkel, S. J. (2022). Paul Broca: from fame to shame? Brain, 145(3), 801-804. doi:10.1093/brain/awab444.
Abstract
In 2016, the University of Bordeaux ran a competition within the local neuroscience community to find a
name for its new neuroscience building. The name of Paul Broca, who was born nearby in 1824, was chosen
in honour of his origins and his contributions to neuroscience. Recently, however, a debate has been ignited
about the appropriateness of this choice, given Broca’s endorsement of physiological anthropology. At a time
when academic institutions worldwide are revising their curricula to better reflect the contributions of pre-
viously overlooked groups, how should we respond when the views of the ‘founding fathers’ of neurology
clash with those of society today?Additional information
supplementary figure -
Dulyan, L., Talozzi, L., Pacella, V., Corbetta, M., Forkel, S. J., & Thiebaut de Schotten, M. (2022). Longitudinal prediction of motor dysfunction after stroke: a disconnectome study. Brain Structure and Function, 227, 3085-3098. doi:10.1007/s00429-022-02589-5.
Abstract
Motricity is the most commonly affected ability after a stroke. While many clinical studies attempt to predict motor symptoms at different chronic time points after a stroke, longitudinal acute-to-chronic studies remain scarce. Taking advantage of recent advances in mapping brain disconnections, we predict motor outcomes in 62 patients assessed longitudinally two weeks, three months, and one year after their stroke. Results indicate that brain disconnection patterns accurately predict motor impairments. However, disconnection patterns leading to impairment differ between the three-time points and between left and right motor impairments. These results were cross-validated using resampling techniques. In sum, we demonstrated that while some neuroplasticity mechanisms exist changing the structure–function relationship, disconnection patterns prevail when predicting motor impairment at different time points after stroke.Additional information
supplementary file -
Forkel, S. J., Labache, L., Nachev, P., Thiebaut de Schotten, M., & Hesling, I. (2022). Stroke disconnectome decodes reading networks. Brain Structure and Function, 227, 2897-2908. doi:10.1007/s00429-022-02575-x.
Abstract
Cognitive functional neuroimaging has been around for over 30 years and has shed light on the brain areas relevant for reading. However, new methodological developments enable mapping the interaction between functional imaging and the underlying white matter networks. In this study, we used such a novel method, called the disconnectome, to decode the reading circuitry in the brain. We used the resulting disconnection patterns to predict a typical lesion that would lead to reading deficits after brain damage. Our results suggest that white matter connections critical for reading include fronto-parietal U-shaped fibres and the vertical occipital fasciculus (VOF). The lesion most predictive of a reading deficit would impinge on the left temporal, occipital, and inferior parietal gyri. This novel framework can systematically be applied to bridge the gap between the neuropathology of language and cognitive neuroscience. -
Forkel, S. J. (2022). Lesion-Symptom Mapping: From Single Cases to the Human Disconnectome. In S. Della Salla (
Ed. ), Encyclopedia of Behavioral Neuroscience (2nd edition, pp. 142-154). Elsevier. doi:10.1016/B978-0-12-819641-0.00056-6.Abstract
Lesion symptom mapping has revolutionized our understanding of the functioning of the human brain. Associating damaged voxels in the brain with loss of function has created a map of the brain that identifies critical areas. While these methods have significantly advanced our understanding, recent improvements have identified the need for multivariate and multimodal methods to map hidden lesions and damage to white matter networks beyond the lesion voxels. This article reviews the evolution of lesion-symptom mapping from single case studies to the human disconnectome. -
Forkel, S. J., Friedrich, P., Thiebaut de Schotten, M., & Howells, H. (2022). White matter variability, cognition, and disorders: a systematic review. Brain Structure & Function, 227, 529-544. doi:10.1007/s00429-021-02382-w.
Abstract
Inter-individual differences can inform treatment procedures and—if accounted for—have the potential to significantly improve patient outcomes. However, when studying brain anatomy, these inter-individual variations are commonly unaccounted for, despite reports of differences in gross anatomical features, cross-sectional, and connectional anatomy. Brain connections are essential to facilitate functional organization and, when severed, cause impairments or complete loss of function. Hence, the study of cerebral white matter may be an ideal compromise to capture inter-individual variability in structure and function. We reviewed the wealth of studies that associate cognitive functions and clinical symptoms with individual tracts using diffusion tractography. Our systematic review indicates that tractography has proven to be a sensitive method in neurology, psychiatry, and healthy populations to identify variability and its functional correlates. However, the literature may be biased, as the most commonly studied tracts are not necessarily those with the highest sensitivity to cognitive functions and pathologies. Additionally, the hemisphere of the studied tract is often unreported, thus neglecting functional laterality and asymmetries. Finally, we demonstrate that tracts, as we define them, are not correlated with one, but multiple cognitive domains or pathologies. While our systematic review identified some methodological caveats, it also suggests that tract–function correlations might still be a promising tool in identifying biomarkers for precision medicine. They can characterize variations in brain anatomy, differences in functional organization, and predicts resilience and recovery in patients.Additional information
supplementary file -
Forkel, S. J., Friedrich, P., Thiebaut de Schotten, M., & Howells, H. (2022). White matter variability, cognition, and disorders. In S. Della Sala (
Ed. ), Encyclopedia of Behavioral Neuroscience (2nd ed., pp. 233-241). Amsterdam: Elsevier.Abstract
Inter-individual differences can inform treatment procedures and - if accounted for - can improve patient outcomes. However, when studying brain anatomy, these variations are largely unaccounted for. Brain connections are essential to mediate brain functional organization and, when severed, cause functional impairments. Here we reviewed the wealth of studies that associate functions and clinical symptoms with connections using tractography. Our results indicate that tractography is a sensitive method in healthy and clinical conditions to identify variability and its functional correlates. While our review identified some methodological caveats, it also suggests that tract-function correlations might be a promising biomarker for precision medicine. -
Genon, S., & Forkel, S. J. (2022). How do different parts of brain white matter develop after birth in humans? Neuron, 110(23), 3860-3863. doi:10.1016/j.neuron.2022.11.011.
Abstract
Understanding human white matter development is vital to characterize typical brain organization and developmental neurocognitive disorders. In this issue of Neuron, Nazeri and colleagues1 identify different parts of white matter in the neonatal brain and show their maturational trajectories in line with microstructural feature development. -
Mekki, Y., Guillemot, V., Lemaître, H., Carrión-Castillo, A., Forkel, S. J., Frouin, V., & Philippe, C. (2022). The genetic architecture of language functional connectivity. NeuroImage, 249: 118795. doi:10.1016/j.neuroimage.2021.118795.
Abstract
Language is a unique trait of the human species, of which the genetic architecture remains largely unknown. Through language disorders studies, many candidate genes were identified. However, such complex and multifactorial trait is unlikely to be driven by only few genes and case-control studies, suffering from a lack of power, struggle to uncover significant variants. In parallel, neuroimaging has significantly contributed to the understanding of structural and functional aspects of language in the human brain and the recent availability of large scale cohorts like UK Biobank have made possible to study language via image-derived endophenotypes in the general population. Because of its strong relationship with task-based fMRI (tbfMRI) activations and its easiness of acquisition, resting-state functional MRI (rsfMRI) have been more popularised, making it a good surrogate of functional neuronal processes. Taking advantage of such a synergistic system by aggregating effects across spatially distributed traits, we performed a multivariate genome-wide association study (mvGWAS) between genetic variations and resting-state functional connectivity (FC) of classical brain language areas in the inferior frontal (pars opercularis, triangularis and orbitalis), temporal and inferior parietal lobes (angular and supramarginal gyri), in 32,186 participants from UK Biobank. Twenty genomic loci were found associated with language FCs, out of which three were replicated in an independent replication sample. A locus in 3p11.1, regulating EPHA3 gene expression, is found associated with FCs of the semantic component of the language network, while a locus in 15q14, regulating THBS1 gene expression is found associated with FCs of the perceptual-motor language processing, bringing novel insights into the neurobiology of language. -
Thiebaut de Schotten, M., & Forkel, S. J. (2022). The emergent properties of the connected brain. Science, 378(6619), 505-510. doi:10.1126/science.abq2591.
Abstract
There is more to brain connections than the mere transfer of signals between brain regions. Behavior and cognition emerge through cortical area interaction. This requires integration between local and distant areas orchestrated by densely connected networks. Brain connections determine the brain’s functional organization. The imaging of connections in the living brain has provided an opportunity to identify the driving factors behind the neurobiology of cognition. Connectivity differences between species and among humans have furthered the understanding of brain evolution and of diverging cognitive profiles. Brain pathologies amplify this variability through disconnections and, consequently, the disintegration of cognitive functions. The prediction of long-term symptoms is now preferentially based on brain disconnections. This paradigm shift will reshape our brain maps and challenge current brain models. -
Barrett, R. L. C., Dawson, M., Dyrby, T. B., Krug, K., Ptito, M., D'Arceuil, H., Croxson, P. L., Johnson, P. J., Howells, H., Forkel, S. J., Dell'Acqua, F., & Catani, M. (2020). Differences in Frontal Network Anatomy Across Primate Species. The Journal of Neuroscience, 40(10), 2094-2107. doi:10.1523/JNEUROSCI.1650-18.2019.
Abstract
The frontal lobe is central to distinctive aspects of human cognition and behavior. Some comparative studies link this to a larger frontal cortex and even larger frontal white matter in humans compared with other primates, yet others dispute these findings. The discrepancies between studies could be explained by limitations of the methods used to quantify volume differences across species, especially when applied to white matter connections. In this study, we used a novel tractography approach to demonstrate that frontal lobe networks, extending within and beyond the frontal lobes, occupy 66% of total brain white matter in humans and 48% in three monkey species: vervets (Chlorocebus aethiops), rhesus macaque (Macaca mulatta) and cynomolgus macaque (Macaca fascicularis), all male. The simian–human differences in proportional frontal tract volume were significant for projection, commissural, and both intralobar and interlobar association tracts. Among the long association tracts, the greatest difference was found for tracts involved in motor planning, auditory memory, top-down control of sensory information, and visuospatial attention, with no significant differences in frontal limbic tracts important for emotional processing and social behaviour. In addition, we found that a nonfrontal tract, the anterior commissure, had a smaller volume fraction in humans, suggesting that the disproportionally large volume of human frontal lobe connections is accompanied by a reduction in the proportion of some nonfrontal connections. These findings support a hypothesis of an overall rearrangement of brain connections during human evolution. -
Forkel, S. J., Rogalski, E., Drossinos Sancho, N., D'Anna, L., Luque Laguna, P., Sridhar, J., Dell'Acqua, F., Weintraub, S., Thompson, C., Mesulam, M.-M., & Catani, M. (2020). Anatomical evidence of an indirect pathway for word repetition. Neurology, 94, e594-e606. doi:10.1212/WNL.0000000000008746.
Abstract
Objective: To combine MRI-based cortical morphometry and diffusion white matter tractography to describe the anatomical correlates of repetition deficits in patients with primary progressive aphasia (PPA).
Methods: The traditional anatomical model of language identifies a network for word repetition that includes Wernicke and Broca regions directly connected via the arcuate fasciculus. Recent tractography findings of an indirect pathway between Wernicke and Broca regions suggest a critical role of the inferior parietal lobe for repetition. To test whether repetition deficits are associated with damage to the direct or indirect pathway between both regions, tractography analysis was performed in 30 patients with PPA (64.27 ± 8.51 years) and 22 healthy controls. Cortical volume measurements were also extracted from 8 perisylvian language areas connected by the direct and indirect pathways.
Results: Compared to healthy controls, patients with PPA presented with reduced performance in repetition tasks and increased damage to most of the perisylvian cortical regions and their connections through the indirect pathway. Repetition deficits were prominent in patients with cortical atrophy of the temporo-parietal region with volumetric reductions of the indirect pathway.
Conclusions: The results suggest that in PPA, deficits in repetition are due to damage to the temporo-parietal cortex and its connections to Wernicke and Broca regions. We therefore propose a revised language model that also includes an indirect pathway for repetition, which has important clinical implications for the functional mapping and treatment of neurologic patients. -
Forkel, S. J., & Thiebaut de Schotten, M. (2020). Towards metabolic disconnection – symptom mapping. Brain, 143(3), 718-721. doi:10.1093/brain/awaa060.
Abstract
This scientific commentary refers to ‘Metabolic lesion-deficit mapping of human cognition’ by Jha etal. -
Friedrich, P., Forkel, S. J., & Thiebaut de Schotten, M. (2020). Mapping the principal gradient onto the corpus callosum. NeuroImage, 223: 117317. doi:10.1016/j.neuroimage.2020.117317.
Abstract
Gradients capture some of the variance of the resting-state functional magnetic resonance imaging (rsfMRI) signal. Amongst these, the principal gradient depicts a functional processing hierarchy that spans from sensory-motor cortices to regions of the default-mode network. While the cortex has been well characterised in terms of gradients little is known about its underlying white matter. For instance, comprehensive mapping of the principal gradient on the largest white matter tract, the corpus callosum, is still missing. Here, we mapped the principal gradient onto the midsection of the corpus callosum using the 7T human connectome project dataset. We further explored how quantitative measures and variability in callosal midsection connectivity relate to the principal gradient values. In so doing, we demonstrated that the extreme values of the principal gradient are located within the callosal genu and the posterior body, have lower connectivity variability but a larger spatial extent along the midsection of the corpus callosum than mid-range values. Our results shed light on the relationship between the brain's functional hierarchy and the corpus callosum. We further speculate about how these results may bridge the gap between functional hierarchy, brain asymmetries, and evolution.Additional information
supplementary file -
Friedrich, P., Thiebaut de Schotten, M., Forkel, S. J., Stacho, M., & Howells, H. (2020). An ancestral anatomical and spatial bias for visually guided behavior. Proceedings of the National Academy of Sciences of the United States of America, 117(5), 2251-2252. doi:10.1073/pnas.1918402117.
Abstract
Human behavioral asymmetries are commonly studied in the context of structural cortical and connectional asymmetries. Within this framework, Sreenivasan and Sridharan (1) provide intriguing evidence of a relationship between visual asymmetries and the lateralization of superior colliculi connections—a phylogenetically older mesencephalic structure. Specifically, response facilitation for cued locations (i.e., choice bias) in the contralateral hemifield was associated with differences in the connectivity of the superior colliculus. Given that the superior colliculus has a structural homolog—the optic tectum—which can be traced across all Vertebrata, these results may have meaningful evolutionary ramifications. -
Howells, H., Puglisi, G., Leonetti, A., Vigano, L., Fornia, L., Simone, L., Forkel, S. J., Rossi, M., Riva, M., Cerri, G., & Bello, L. (2020). The role of left fronto-parietal tracts in hand selection: Evidence from neurosurgery. Cortex, 128, 297-311. doi:10.1016/j.cortex.2020.03.018.
Abstract
Strong right-hand preference on the population level is a uniquely human feature, although its neural basis is still not clearly defined. Recent behavioural and neuroimaging literature suggests that hand preference may be related to the orchestrated function and size of fronto-parietal white matter tracts bilaterally. Lesions to these tracts induced during tumour resection may provide an opportunity to test this hypothesis. In the present study, a cohort of seventeen neurosurgical patients with left hemisphere brain tumours were recruited to investigate whether resection of certain white matter tracts affects the choice of hand selected for the execution of a goal-directed task (assembly of jigsaw puzzles). Patients performed the puzzles, but also tests for basic motor ability, selective attention and visuo-constructional ability, preoperatively and one month after surgery. An atlas-based disconnectome analysis was conducted to evaluate whether resection of tracts was significantly associated with changes in hand selection. Diffusion tractography was also used to dissect fronto-parietal tracts (the superior longitudinal fasciculus) and the corticospinal tract. Results showed a shift in hand selection despite the absence of any motor or cognitive deficits, which was significantly associated with frontal and parietal resections rather than other lobes. In particular, the shift in hand selection was significantly associated with the resection of dorsal rather than ventral fronto-parietal white matter connections. Dorsal white matter pathways contribute bilaterally to control of goal-directed hand movements. We show that unilateral lesions, that may unbalance the cooperation of the two hemispheres, can alter the choice of hand selected to accomplish movements. -
Milham, M., Petkov, C. I., Margulies, D. S., Schroeder, C. E., Basso, M. A., Belin, P., Fair, D. A., Fox, A., Kastner, S., Mars, R. B., Messinger, A., Poirier, C., Vanduffel, W., Van Essen, D. C., Alvand, A., Becker, Y., Ben Hamed, S., Benn, A., Bodin, C., Boretius, S. Milham, M., Petkov, C. I., Margulies, D. S., Schroeder, C. E., Basso, M. A., Belin, P., Fair, D. A., Fox, A., Kastner, S., Mars, R. B., Messinger, A., Poirier, C., Vanduffel, W., Van Essen, D. C., Alvand, A., Becker, Y., Ben Hamed, S., Benn, A., Bodin, C., Boretius, S., Cagna, B., Coulon, O., El-Gohary, S. H., Evrard, H., Forkel, S. J., Friedrich, P., Froudist-Walsh, S., Garza-Villarreal, E. A., Gao, Y., Gozzi, A., Grigis, A., Hartig, R., Hayashi, T., Heuer, K., Howells, H., Ardesch, D. J., Jarraya, B., Jarrett, W., Jedema, H. P., Kagan, I., Kelly, C., Kennedy, H., Klink, P. C., Kwok, S. C., Leech, R., Liu, X., Madan, C., Madushanka, W., Majka, P., Mallon, A.-M., Marche, K., Meguerditchian, A., Menon, R. S., Merchant, H., Mitchell, A., Nenning, K.-H., Nikolaidis, A., Ortiz-Rios, M., Pagani, M., Pareek, V., Prescott, M., Procyk, E., Rajimehr, R., Rautu, I.-S., Raz, A., Roe, A. W., Rossi-Pool, R., Roumazeilles, L., Sakai, T., Sallet, J., García-Saldivar, P., Sato, C., Sawiak, S., Schiffer, M., Schwiedrzik, C. M., Seidlitz, J., Sein, J., Shen, Z.-m., Shmuel, A., Silva, A. C., Simone, L., Sirmpilatze, N., Sliwa, J., Smallwood, J., Tasserie, J., Thiebaut de Schotten, M., Toro, R., Trapeau, R., Uhrig, L., Vezoli, J., Wang, Z., Wells, S., Williams, B., Xu, T., Xu, A. G., Yacoub, E., Zhan, M., Ai, L., Amiez, C., Balezeau, F., Baxter, M. G., Blezer, E. L., Brochier, T., Chen, A., Croxson, P. L., Damatac, C. G., Dehaene, S., Everling, S., Fleysher, L., Freiwald, W., Griffiths, T. D., Guedj, C., Hadj-Bouziane, F., Harel, N., Hiba, B., Jung, B., Koo, B., Laland, K. N., Leopold, D. A., Lindenfors, P., Meunier, M., Mok, K., Morrison, J. H., Nacef, J., Nagy, J., Pinsk, M., Reader, S. M., Roelfsema, P. R., Rudko, D. A., Rushworth, M. F., Russ, B. E., Schmid, M. C., Sullivan, E. L., Thiele, A., Todorov, O. S., Tsao, D., Ungerleider, L., Wilson, C. R., Ye, F. Q., Zarco, W., & Zhou, Y.-d. (2020). Accelerating the Evolution of Nonhuman Primate Neuroimaging. Neuron, 105(4), 600-603. doi:10.1016/j.neuron.2019.12.023.
Abstract
Nonhuman primate neuroimaging is on the cusp of a transformation, much in the same way its human counterpart was in 2010, when the Human Connectome Project was launched to accelerate progress. Inspired by an open data-sharing initiative, the global community recently met and, in this article, breaks through obstacles to define its ambitions.Additional information
supplementary information -
Waymel, A., Friedrich, P., Bastian, P.-A., Forkel, S. J., & Thiebaut de Schotten, M. (2020). Anchoring the human olfactory system within a functional gradient. NeuroImage, 216: 116863. doi:10.1016/j.neuroimage.2020.116863.
Abstract
Margulies et al. (2016) demonstrated the existence of at least five independent functional connectivity gradients in the human brain. However, it is unclear how these functional gradients might link to anatomy. The dual origin theory proposes that differences in cortical cytoarchitecture originate from two trends of progressive differentiation between the different layers of the cortex, referred to as the hippocampocentric and olfactocentric systems. When conceptualising the functional connectivity gradients within the evolutionary framework of the Dual Origin theory, the first gradient likely represents the hippocampocentric system anatomically. Here we expand on this concept and demonstrate that the fifth gradient likely links to the olfactocentric system. We describe the anatomy of the latter as well as the evidence to support this hypothesis. Together, the first and fifth gradients might help to model the Dual Origin theory of the human brain and inform brain models and pathologies.
Share this page