Stephanie Forkel

Publications

Displaying 1 - 20 of 20
  • Akeret, K., Forkel, S. J., Buzzi, R. M., Vasella, F., Amrein, I., Colacicco, G., Regli, L., Serra, C., & Krayenbühl, N. (2022). Multimodal anatomy of the human forniceal commissure. Communications Biology, 5: 742. doi:10.1038/s42003-022-03692-3.

    Abstract

    Ambiguity surrounds the existence and morphology of the human forniceal commissure. We combine advanced in-vivo tractography, multidirectional ex-vivo fiber dissection, and multiplanar histological analysis to characterize this structure’s anatomy. Across all 178 subjects, in-vivo fiber dissection based on the Human Connectome Project 7 T MRI data identifies no interhemispheric connections between the crura fornicis. Multidirectional ex-vivo fiber dissection under the operating microscope demonstrates the psalterium as a thin soft-tissue membrane spanning between the right and left crus fornicis, but exposes no commissural fibers. Multiplanar histological analysis with myelin and Bielchowsky silver staining, however, visualizes delicate cruciform fibers extending between the crura fornicis, enclosed by connective tissue, the psalterium. The human forniceal commissure is therefore much more delicate than previously described and presented in anatomical textbooks. This finding is consistent with the observed phylogenetic trend of a reduction of the forniceal commissure in non-human primates compared to non-primate eutherian mammals.

    Additional information

    supplementary material
  • Alves, P. N., Forkel, S. J., Corbetta, M., & Thiebaut de Schotten, M. (2022). The subcortical and neurochemical organization of the ventral and dorsal attention networks. Communications Biology, 5: 1343. doi:10.1038/s42003-022-04281-0.

    Abstract

    Attention is a core cognitive function that filters and selects behaviourally relevant information in the environment. The cortical mapping of attentional systems identified two segregated networks that mediate stimulus-driven and goal-driven processes, the Ventral and the Dorsal Attention Networks (VAN, DAN). Deep brain electrophysiological recordings, behavioral data from phylogenetic distant species, and observations from human brain pathologies challenge purely corticocentric models. Here, we used advanced methods of functional alignment applied to resting-state functional connectivity analyses to map the subcortical architecture of the Ventral and Dorsal Attention Networks. Our investigations revealed the involvement of the pulvinar, the superior colliculi, the head of caudate nuclei, and a cluster of brainstem nuclei relevant to both networks. These nuclei are densely connected structural network hubs, as revealed by diffusion-weighted imaging tractography. Their projections establish interrelations with the acetylcholine nicotinic receptor as well as dopamine and serotonin transporters, as demonstrated in a spatial correlation analysis with a normative atlas of neurotransmitter systems. This convergence of functional, structural, and neurochemical evidence provides a comprehensive framework to understand the neural basis of attention across different species and brain diseases.
  • Boraud, T., & Forkel, S. J. (2022). Paul Broca: from fame to shame? Brain, 145(3), 801-804. doi:10.1093/brain/awab444.

    Abstract

    In 2016, the University of Bordeaux ran a competition within the local neuroscience community to find a
    name for its new neuroscience building. The name of Paul Broca, who was born nearby in 1824, was chosen
    in honour of his origins and his contributions to neuroscience. Recently, however, a debate has been ignited
    about the appropriateness of this choice, given Broca’s endorsement of physiological anthropology. At a time
    when academic institutions worldwide are revising their curricula to better reflect the contributions of pre-
    viously overlooked groups, how should we respond when the views of the ‘founding fathers’ of neurology
    clash with those of society today?

    Additional information

    supplementary figure
  • Dulyan, L., Talozzi, L., Pacella, V., Corbetta, M., Forkel, S. J., & Thiebaut de Schotten, M. (2022). Longitudinal prediction of motor dysfunction after stroke: a disconnectome study. Brain Structure and Function, 227, 3085-3098. doi:10.1007/s00429-022-02589-5.

    Abstract

    Motricity is the most commonly affected ability after a stroke. While many clinical studies attempt to predict motor symptoms at different chronic time points after a stroke, longitudinal acute-to-chronic studies remain scarce. Taking advantage of recent advances in mapping brain disconnections, we predict motor outcomes in 62 patients assessed longitudinally two weeks, three months, and one year after their stroke. Results indicate that brain disconnection patterns accurately predict motor impairments. However, disconnection patterns leading to impairment differ between the three-time points and between left and right motor impairments. These results were cross-validated using resampling techniques. In sum, we demonstrated that while some neuroplasticity mechanisms exist changing the structure–function relationship, disconnection patterns prevail when predicting motor impairment at different time points after stroke.

    Additional information

    supplementary file
  • Forkel, S. J., Labache, L., Nachev, P., Thiebaut de Schotten, M., & Hesling, I. (2022). Stroke disconnectome decodes reading networks. Brain Structure and Function, 227, 2897-2908. doi:10.1007/s00429-022-02575-x.

    Abstract

    Cognitive functional neuroimaging has been around for over 30 years and has shed light on the brain areas relevant for reading. However, new methodological developments enable mapping the interaction between functional imaging and the underlying white matter networks. In this study, we used such a novel method, called the disconnectome, to decode the reading circuitry in the brain. We used the resulting disconnection patterns to predict a typical lesion that would lead to reading deficits after brain damage. Our results suggest that white matter connections critical for reading include fronto-parietal U-shaped fibres and the vertical occipital fasciculus (VOF). The lesion most predictive of a reading deficit would impinge on the left temporal, occipital, and inferior parietal gyri. This novel framework can systematically be applied to bridge the gap between the neuropathology of language and cognitive neuroscience.
  • Forkel, S. J. (2022). Lesion-Symptom Mapping: From Single Cases to the Human Disconnectome. In S. Della Salla (Ed.), Encyclopedia of Behavioral Neuroscience (2nd edition, pp. 142-154). Elsevier. doi:10.1016/B978-0-12-819641-0.00056-6.

    Abstract

    Lesion symptom mapping has revolutionized our understanding of the functioning of the human brain. Associating damaged voxels in the brain with loss of function has created a map of the brain that identifies critical areas. While these methods have significantly advanced our understanding, recent improvements have identified the need for multivariate and multimodal methods to map hidden lesions and damage to white matter networks beyond the lesion voxels. This article reviews the evolution of lesion-symptom mapping from single case studies to the human disconnectome.
  • Forkel, S. J., Friedrich, P., Thiebaut de Schotten, M., & Howells, H. (2022). White matter variability, cognition, and disorders: a systematic review. Brain Structure & Function, 227, 529-544. doi:10.1007/s00429-021-02382-w.

    Abstract

    Inter-individual differences can inform treatment procedures and—if accounted for—have the potential to significantly improve patient outcomes. However, when studying brain anatomy, these inter-individual variations are commonly unaccounted for, despite reports of differences in gross anatomical features, cross-sectional, and connectional anatomy. Brain connections are essential to facilitate functional organization and, when severed, cause impairments or complete loss of function. Hence, the study of cerebral white matter may be an ideal compromise to capture inter-individual variability in structure and function. We reviewed the wealth of studies that associate cognitive functions and clinical symptoms with individual tracts using diffusion tractography. Our systematic review indicates that tractography has proven to be a sensitive method in neurology, psychiatry, and healthy populations to identify variability and its functional correlates. However, the literature may be biased, as the most commonly studied tracts are not necessarily those with the highest sensitivity to cognitive functions and pathologies. Additionally, the hemisphere of the studied tract is often unreported, thus neglecting functional laterality and asymmetries. Finally, we demonstrate that tracts, as we define them, are not correlated with one, but multiple cognitive domains or pathologies. While our systematic review identified some methodological caveats, it also suggests that tract–function correlations might still be a promising tool in identifying biomarkers for precision medicine. They can characterize variations in brain anatomy, differences in functional organization, and predicts resilience and recovery in patients.

    Additional information

    supplementary file
  • Forkel, S. J., Friedrich, P., Thiebaut de Schotten, M., & Howells, H. (2022). White matter variability, cognition, and disorders. In S. Della Sala (Ed.), Encyclopedia of Behavioral Neuroscience (2nd ed., pp. 233-241). Amsterdam: Elsevier.

    Abstract

    Inter-individual differences can inform treatment procedures and - if accounted for - can improve patient outcomes. However, when studying brain anatomy, these variations are largely unaccounted for. Brain connections are essential to mediate brain functional organization and, when severed, cause functional impairments. Here we reviewed the wealth of studies that associate functions and clinical symptoms with connections using tractography. Our results indicate that tractography is a sensitive method in healthy and clinical conditions to identify variability and its functional correlates. While our review identified some methodological caveats, it also suggests that tract-function correlations might be a promising biomarker for precision medicine.
  • Genon, S., & Forkel, S. J. (2022). How do different parts of brain white matter develop after birth in humans? Neuron, 110(23), 3860-3863. doi:10.1016/j.neuron.2022.11.011.

    Abstract

    Understanding human white matter development is vital to characterize typical brain organization and developmental neurocognitive disorders. In this issue of Neuron, Nazeri and colleagues1 identify different parts of white matter in the neonatal brain and show their maturational trajectories in line with microstructural feature development.
  • Mekki, Y., Guillemot, V., Lemaître, H., Carrión-Castillo, A., Forkel, S. J., Frouin, V., & Philippe, C. (2022). The genetic architecture of language functional connectivity. NeuroImage, 249: 118795. doi:10.1016/j.neuroimage.2021.118795.

    Abstract

    Language is a unique trait of the human species, of which the genetic architecture remains largely unknown. Through language disorders studies, many candidate genes were identified. However, such complex and multifactorial trait is unlikely to be driven by only few genes and case-control studies, suffering from a lack of power, struggle to uncover significant variants. In parallel, neuroimaging has significantly contributed to the understanding of structural and functional aspects of language in the human brain and the recent availability of large scale cohorts like UK Biobank have made possible to study language via image-derived endophenotypes in the general population. Because of its strong relationship with task-based fMRI (tbfMRI) activations and its easiness of acquisition, resting-state functional MRI (rsfMRI) have been more popularised, making it a good surrogate of functional neuronal processes. Taking advantage of such a synergistic system by aggregating effects across spatially distributed traits, we performed a multivariate genome-wide association study (mvGWAS) between genetic variations and resting-state functional connectivity (FC) of classical brain language areas in the inferior frontal (pars opercularis, triangularis and orbitalis), temporal and inferior parietal lobes (angular and supramarginal gyri), in 32,186 participants from UK Biobank. Twenty genomic loci were found associated with language FCs, out of which three were replicated in an independent replication sample. A locus in 3p11.1, regulating EPHA3 gene expression, is found associated with FCs of the semantic component of the language network, while a locus in 15q14, regulating THBS1 gene expression is found associated with FCs of the perceptual-motor language processing, bringing novel insights into the neurobiology of language.
  • Thiebaut de Schotten, M., & Forkel, S. J. (2022). The emergent properties of the connected brain. Science, 378(6619), 505-510. doi:10.1126/science.abq2591.

    Abstract

    There is more to brain connections than the mere transfer of signals between brain regions. Behavior and cognition emerge through cortical area interaction. This requires integration between local and distant areas orchestrated by densely connected networks. Brain connections determine the brain’s functional organization. The imaging of connections in the living brain has provided an opportunity to identify the driving factors behind the neurobiology of cognition. Connectivity differences between species and among humans have furthered the understanding of brain evolution and of diverging cognitive profiles. Brain pathologies amplify this variability through disconnections and, consequently, the disintegration of cognitive functions. The prediction of long-term symptoms is now preferentially based on brain disconnections. This paradigm shift will reshape our brain maps and challenge current brain models.
  • Croxson, P., Forkel, S. J., Cerliani, L., & Thiebaut De Schotten, M. (2018). Structural Variability Across the Primate Brain: A Cross-Species Comparison. Cerebral Cortex, 28(11), 3829-3841. doi:10.1093/cercor/bhx244.

    Abstract

    A large amount of variability exists across human brains; revealed initially on a small scale by postmortem studies and,
    more recently, on a larger scale with the advent of neuroimaging. Here we compared structural variability between human
    and macaque monkey brains using grey and white matter magnetic resonance imaging measures. The monkey brain was
    overall structurally as variable as the human brain, but variability had a distinct distribution pattern, with some key areas
    showing high variability. We also report the first evidence of a relationship between anatomical variability and evolutionary
    expansion in the primate brain. This suggests a relationship between variability and stability, where areas of low variability
    may have evolved less recently and have more stability, while areas of high variability may have evolved more recently and
    be less similar across individuals. We showed specific differences between the species in key areas, including the amount of
    hemispheric asymmetry in variability, which was left-lateralized in the human brain across several phylogenetically recent
    regions. This suggests that cerebral variability may be another useful measure for comparison between species and may add
    another dimension to our understanding of evolutionary mechanisms.
  • Forkel, S. J., & Catani, M. (2018). Lesion mapping in acute stroke aphasia and its implications for recovery. Neuropsychologia, 115, 88-100. doi:10.1016/j.neuropsychologia.2018.03.036.

    Abstract

    Patients with stroke offer a unique window into understanding human brain function. Mapping stroke lesions poses several challenges due to the complexity of the lesion anatomy and the mechanisms causing local and remote disruption on brain networks. In this prospective longitudinal study, we compare standard and advanced approaches to white matter lesion mapping applied to acute stroke patients with aphasia. Eighteen patients with acute left hemisphere stroke were recruited and scanned within two weeks from symptom onset. Aphasia assessment was performed at baseline and six-month follow-up. Structural and diffusion MRI contrasts indicated an area of maximum overlap in the anterior external/extreme capsule with diffusion images showing a larger overlap extending into posterior perisylvian regions. Anatomical predictors of recovery included damage to ipsilesional tracts (as shown by both structural and diffusion images) and contralesional tracts (as shown by diffusion images only). These findings indicate converging results from structural and diffusion lesion mapping methods but also clear differences between the two approaches in their ability to identify predictors of recovery outside the lesioned regions.
  • Forkel, S. J., & Catani, M. (2018). Structural Neuroimaging. In A. De Groot, & P. Hagoort (Eds.), Research Methods in Psycholinguistics and the Neurobiology of Language: A Practical Guide (pp. 288-308). Hoboken: Wiley. doi:10.1002/9781394259762.ch15.

    Abstract

    Structural imaging based on computerized tomography (CT) and magnetic resonance imaging (MRI) has progressively replaced traditional post‐mortem studies in the process of identifying the neuroanatomical basis of language. In the clinical setting, the information provided by structural imaging has been used to confirm the exact diagnosis and formulate an individualized treatment plan. In the research arena, neuroimaging has permitted to understand neuroanatomy at the individual and group level. The possibility to obtain quantitative measures of lesions has improved correlation analyses between severity of symptoms, lesion load, and lesion location. More recently, the development of structural imaging based on diffusion MRI has provided valid solutions to two major limitations of more conventional imaging. In stroke patients, diffusion can visualize early changes due to a stroke that are otherwise not detectable with more conventional structural imaging, with important implications for the clinical management of acute stroke patients. Beyond the sensitivity to early changes, diffusion imaging tractography presents the possibility of visualizing the trajectories of individual white matter pathways connecting distant regions. A pathway analysis based on tractography is offering a new perspective in neurolinguistics. First, it permits to formulate new anatomical models of language function in the healthy brain and allows to directly test these models in the human population without any reliance on animal models. Second, by defining the exact location of the damage to specific white matter connections we can understand the contribution of different mechanisms to the emergence of language deficits (e.g., cortical versus disconnection mechanisms). Finally, a better understanding of the anatomical variability of different language networks is helping to identify new anatomical predictors of language recovery. In this chapter we will focus on the principles of structural MRI and, in particular, diffusion imaging and tractography and present examples of how these methods have informed our understanding of variance in language performances in the healthy brain and language deficits in patient populations.
  • Vanderauwera, J., De Vos, A., Forkel, S. J., Catani, M., Wouters, J., Vandermosten, M., & Ghesquière, P. (2018). Neural organization of ventral white matter tracts parallels the initial steps of reading development: A DTI tractography study. Brain and Language, 183, 32-40. doi:10.1016/j.bandl.2018.05.007.

    Abstract

    Insight in the developmental trajectory of the neuroanatomical reading correlates is important to understand related cognitive processes and disorders. In adults, a dual pathway model has been suggested encompassing a dorsal phonological and a ventral orthographic white matter system. This dichotomy seems not present in pre-readers, and the specific role of ventral white matter in reading remains unclear. Therefore, the present longitudinal study investigated the relation between ventral white matter and cognitive processes underlying reading in children with a broad range of reading skills (n = 61). Ventral pathways of the reading network were manually traced using diffusion tractography: the inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF). Pathways were examined pre-reading (5–6 years) and after two years of reading acquisition (7–8 years). Dimension reduction for the cognitive measures resulted in one component for pre-reading cognitive measures and a separate phonological and orthographic component for the early reading measures. Regression analyses revealed a relation between the pre-reading cognitive component and bilateral IFOF and left ILF. Interestingly, exclusively the left IFOF was related to the orthographic component, whereas none of the pathways was related to the phonological component. Hence, the left IFOF seems to serve as the lexical reading route, already in the earliest reading stages.
  • Besharati, S., Forkel, S. J., Kopelman, M., Solms, M., Jenkinson, P. M., & Fotopoulou, A. (2014). The affective modulation of motor awareness in anosognosia for hemiplegia: Behavioural and lesion evidence. Cortex, 61, 127-140. doi:10.1016/j.cortex.2014.08.016.

    Abstract

    The possible role of emotion in anosognosia for hemiplegia (i.e., denial of motor deficits contralateral to a brain lesion), has long been debated between psychodynamic and neurocognitive theories. However, there are only a handful of case studies focussing on this topic, and the precise role of emotion in anosognosia for hemiplegia requires empirical investigation. In the present study, we aimed to investigate how negative and positive emotions influence motor awareness in anosognosia. Positive and negative emotions were induced under carefully-controlled experimental conditions in right-hemisphere stroke patients with anosognosia for hemiplegia (n = 11) and controls with clinically normal awareness (n = 10). Only the negative, emotion induction condition resulted in a significant improvement of motor awareness in anosognosic patients compared to controls; the positive emotion induction did not. Using lesion overlay and voxel-based lesion-symptom mapping approaches, we also investigated the brain lesions associated with the diagnosis of anosognosia, as well as with performance on the experimental task. Anatomical areas that are commonly damaged in AHP included the right-hemisphere motor and sensory cortices, the inferior frontal cortex, and the insula. Additionally, the insula, putamen and anterior periventricular white matter were associated with less awareness change following the negative emotion induction. This study suggests that motor unawareness and the observed lack of negative emotions about one's disabilities cannot be adequately explained by either purely motivational or neurocognitive accounts. Instead, we propose an integrative account in which insular and striatal lesions result in weak interoceptive and motivational signals. These deficits lead to faulty inferences about the self, involving a difficulty to personalise new sensorimotor information, and an abnormal adherence to premorbid beliefs about the body.

    Additional information

    supplementary file
  • Forkel, S. J., Thiebaut de Schotten, M., Dell’Acqua, F., Kalra, L., Murphy, D. G. M., Williams, S. C. R., & Catani, M. (2014). Anatomical predictors of aphasia recovery: a tractography study of bilateral perisylvian language networks. Brain, 137, 2027-2039. doi:10.1093/brain/awu113.

    Abstract

    Stroke-induced aphasia is associated with adverse effects on quality of life and the ability to return to work. For patients and clinicians the possibility of relying on valid predictors of recovery is an important asset in the clinical management of stroke-related impairment. Age, level of education, type and severity of initial symptoms are established predictors of recovery. However, anatomical predictors are still poorly understood. In this prospective longitudinal study, we intended to assess anatomical predictors of recovery derived from diffusion tractography of the perisylvian language networks. Our study focused on the arcuate fasciculus, a language pathway composed of three segments connecting Wernicke’s to Broca’s region (i.e. long segment), Wernicke’s to Geschwind’s region (i.e. posterior segment) and Broca’s to Geschwind’s region (i.e. anterior segment). In our study we were particularly interested in understanding how lateralization of the arcuate fasciculus impacts on severity of symptoms and their recovery. Sixteen patients (10 males; mean age 60 ± 17 years, range 28–87 years) underwent post stroke language assessment with the Revised Western Aphasia Battery and neuroimaging scanning within a fortnight from symptoms onset. Language assessment was repeated at 6 months. Backward elimination analysis identified a subset of predictor variables (age, sex, lesion size) to be introduced to further regression analyses. A hierarchical regression was conducted with the longitudinal aphasia severity as the dependent variable. The first model included the subset of variables as previously defined. The second model additionally introduced the left and right arcuate fasciculus (separate analysis for each segment). Lesion size was identified as the only independent predictor of longitudinal aphasia severity in the left hemisphere [beta = −0.630, t(−3.129), P = 0.011]. For the right hemisphere, age [beta = −0.678, t(–3.087), P = 0.010] and volume of the long segment of the arcuate fasciculus [beta = 0.730, t(2.732), P = 0.020] were predictors of longitudinal aphasia severity. Adding the volume of the right long segment to the first-level model increased the overall predictive power of the model from 28% to 57% [F(1,11) = 7.46, P = 0.02]. These findings suggest that different predictors of recovery are at play in the left and right hemisphere. The right hemisphere language network seems to be important in aphasia recovery after left hemispheric stroke.

    Additional information

    supplementary information
  • Forkel, S. J. (2014). Identification of anatomical predictors of language recovery after stroke with diffusion tensor imaging. PhD Thesis, King's College London, London.

    Abstract

    Background Stroke-induced aphasia is associated with adverse effects on quality of life and the ability to return to work. However, the predictors of recovery are still poorly understood. Anatomical variability of the arcuate fasciculus, connecting Broca’s and Wernicke’s areas, has been reported in the healthy population using diffusion tensor imaging tractography. In about 40% of the population the arcuate fasciculus is bilateral and this pattern is advantageous for certain language related functions, such as auditory verbal learning (Catani et al. 2007). Methods In this prospective longitudinal study, anatomical predictors of post-stroke aphasia recovery were investigated using diffusion tractography and arterial spin labelling. Patients An 18-subject strong aphasia cohort with first-ever unilateral left hemispheric middle cerebral artery infarcts underwent post stroke language (mean 5±5 days) and neuroimaging (mean 10±6 days) assessments and neuropsychological follow-up at six months. Ten of these patients were available for reassessment one year after symptom onset. Aphasia was assessed with the Western Aphasia Battery, which provides a global measure of severity (Aphasia Quotient, AQ). Results Better recover from aphasia was observed in patients with a right arcuate fasciculus [beta=.730, t(2.732), p=.020] (tractography) and increased fractional anisotropy in the right hemisphere (p<0.05) (Tract-based spatial statistics). Further, an increase in left hemisphere perfusion was observed after one year (p<0.01) (perfusion). Lesion analysis identified maximal overlay in the periinsular white matter (WM). Lesion-symptom mapping identified damage to periinsular structure as predictive for overall aphasia severity and damage to frontal lobe white matter as predictive of repetition deficits. Conclusion These findings suggest an important role for the right hemisphere language network in recovery from aphasia after left hemispheric stroke.

    Additional information

    Link to repository
  • Forkel, S. J., Thiebaut de Schotten, M., Kawadler, J. M., Dell'Acqua, F., Danek, A., & Catani, M. (2014). The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex, 56, 73-84. doi:10.1016/j.cortex.2012.09.005.

    Abstract

    The occipital and frontal lobes are anatomically distant yet functionally highly integrated to generate some of the most complex behaviour. A series of long associative fibres, such as the fronto-occipital networks, mediate this integration via rapid feed-forward propagation of visual input to anterior frontal regions and direct top–down modulation of early visual processing.

    Despite the vast number of anatomical investigations a general consensus on the anatomy of fronto-occipital connections is not forthcoming. For example, in the monkey the existence of a human equivalent of the ‘inferior fronto-occipital fasciculus’ (iFOF) has not been demonstrated. Conversely, a ‘superior fronto-occipital fasciculus’ (sFOF), also referred to as ‘subcallosal bundle’ by some authors, is reported in monkey axonal tracing studies but not in human dissections.

    In this study our aim is twofold. First, we use diffusion tractography to delineate the in vivo anatomy of the sFOF and the iFOF in 30 healthy subjects and three acallosal brains. Second, we provide a comprehensive review of the post-mortem and neuroimaging studies of the fronto-occipital connections published over the last two centuries, together with the first integral translation of Onufrowicz's original description of a human fronto-occipital fasciculus (1887) and Muratoff's report of the ‘subcallosal bundle’ in animals (1893).

    Our tractography dissections suggest that in the human brain (i) the iFOF is a bilateral association pathway connecting ventro-medial occipital cortex to orbital and polar frontal cortex, (ii) the sFOF overlaps with branches of the superior longitudinal fasciculus (SLF) and probably represents an ‘occipital extension’ of the SLF, (iii) the subcallosal bundle of Muratoff is probably a complex tract encompassing ascending thalamo-frontal and descending fronto-caudate connections and is therefore a projection rather than an associative tract.

    In conclusion, our experimental findings and review of the literature suggest that a ventral pathway in humans, namely the iFOF, mediates a direct communication between occipital and frontal lobes. Whether the iFOF represents a unique human pathway awaits further ad hoc investigations in animals.
  • Vergani, F., Mahmood, S., Morris, C., Mitchell, P., & Forkel, S. J. (2014). Intralobar fibres of the occipital lobe: A post mortem dissection study. Cortex, 56, 145-156. doi:10.1016/j.cortex.2014.03.002.

    Abstract

    Introduction

    The atlas by Heinrich Sachs (1892) provided an accurate description of the intralobar fibres of the occipital lobe, with a detailed representation of the short associative tracts connecting different parts of the lobe. Little attention has been paid to the work of Sachs since its publication. In this study, we present the results of the dissection of three hemispheres, performed according to the Klingler technique (1935). Our anatomical findings are then compared to the original description of the occipital fibres anatomy as detailed by Sachs.
    Methods

    Three hemispheres were dissected according to Klingler's technique (1935). Specimens were fixed in 10% formalin and frozen at −15 °C for two weeks. After defreezing, dissection of the white matter fibres was performed with blunt dissectors. Coronal sections were obtained according to the cuts originally described by Sachs. In addition, medial to lateral and lateral to medial dissection of the white matter of the occipital lobe was also performed.

    Results

    A network of short association fibres was demonstrated in the occipital lobe, comprising intralobar association fibres and U-shaped fibres, which are connecting neighbouring gyri. Lateral to the ventricles, longitudinal fibres of the stratum sagittale were also identified that are arranged as external and internal layers. Fibres of the forceps major were also found to be in direct contact with the ventricular walls. We were able to replicate all tracts originally described by Sachs. In addition, a previously unrecognised tract, connecting the cuneus to the lingual gyrus, was identified. This tract corresponds to the “sledge runner”, described in tractography studies.

    Conclusions

    The occipital lobe shows a rich network of intralobar fibres, arranged around the ventricular wall. Good concordance was observed between the Klingler dissection technique and the histological preparations of Sachs.

Share this page