Displaying 101 - 200 of 436
-
Udden, J., Snijders, T. M., Fisher, S. E., & Hagoort, P. (2017). A common variant of the CNTNAP2 gene is associated with structural variation in the left superior occipital gyrus. Brain and Language, 172, 16-21. doi:10.1016/j.bandl.2016.02.003.
Abstract
The CNTNAP2 gene encodes a cell-adhesion molecule that influences the properties of neural networks and the morphology and density of neurons and glial cells. Previous studies have shown association of CNTNAP2 variants with language-related phenotypes in health and disease. Here, we report associations of a common CNTNAP2 polymorphism (rs7794745) with variation in grey matter in a region in the dorsal visual stream. We tried to replicate an earlier study on 314 subjects by Tan and colleagues (2010), but now in a substantially larger group of more than 1700 subjects. Carriers of the T allele showed reduced grey matter volume in left superior occipital gyrus, while we did not replicate associations with grey matter volume in other regions identified by Tan et al (2010). Our work illustrates the importance of independent replication in neuroimaging genetic studies of language-related candidate genes. -
Asaridou, S. S., Takashima, A., Dediu, D., Hagoort, P., & McQueen, J. M. (2016). Repetition suppression in the left inferior frontal gyrus predicts tone learning performance. Cerebral Cortex, 26(6), 2728-2742. doi:10.1093/cercor/bhv126.
Abstract
Do individuals differ in how efficiently they process non-native sounds? To what extent do these differences relate to individual variability in sound-learning aptitude? We addressed these questions by assessing the sound-learning abilities of Dutch native speakers as they were trained on non-native tone contrasts. We used fMRI repetition suppression to the non-native tones to measure participants' neuronal processing efficiency before and after training. Although all participants improved in tone identification with training, there was large individual variability in learning performance. A repetition suppression effect to tone was found in the bilateral inferior frontal gyri (IFGs) before training. No whole-brain effect was found after training; a region-of-interest analysis, however, showed that, after training, repetition suppression to tone in the left IFG correlated positively with learning. That is, individuals who were better in learning the non-native tones showed larger repetition suppression in this area. Crucially, this was true even before training. These findings add to existing evidence that the left IFG plays an important role in sound learning and indicate that individual differences in learning aptitude stem from differences in the neuronal efficiency with which non-native sounds are processed. -
Dimitrova, D. V., Chu, M., Wang, L., Ozyurek, A., & Hagoort, P. (2016). Beat that word: How listeners integrate beat gesture and focus in multimodal speech discourse. Journal of Cognitive Neuroscience, 28(9), 1255-1269. doi:10.1162/jocn_a_00963.
Abstract
Communication is facilitated when listeners allocate their attention to important information (focus) in the message, a process called "information structure." Linguistic cues like the preceding context and pitch accent help listeners to identify focused information. In multimodal communication, relevant information can be emphasized by nonverbal cues like beat gestures, which represent rhythmic nonmeaningful hand movements. Recent studies have found that linguistic and nonverbal attention cues are integrated independently in single sentences. However, it is possible that these two cues interact when information is embedded in context, because context allows listeners to predict what information is important. In an ERP study, we tested this hypothesis and asked listeners to view videos capturing a dialogue. In the critical sentence, focused and nonfocused words were accompanied by beat gestures, grooming hand movements, or no gestures. ERP results showed that focused words are processed more attentively than nonfocused words as reflected in an N1 and P300 component. Hand movements also captured attention and elicited a P300 component. Importantly, beat gesture and focus interacted in a late time window of 600-900 msec relative to target word onset, giving rise to a late positivity when nonfocused words were accompanied by beat gestures. Our results show that listeners integrate beat gesture with the focus of the message and that integration costs arise when beat gesture falls on nonfocused information. This suggests that beat gestures fulfill a unique focusing function in multimodal discourse processing and that they have to be integrated with the information structure of the message. -
Gijssels, T., Staum Casasanto, L., Jasmin, K., Hagoort, P., & Casasanto, D. (2016). Speech accommodation without priming: The case of pitch. Discourse Processes, 53(4), 233-251. doi:10.1080/0163853X.2015.1023965.
Abstract
People often accommodate to each other's speech by aligning their linguistic production with their partner's. According to an influential theory, the Interactive Alignment Model (Pickering & Garrod, 2004), alignment is the result of priming. When people perceive an utterance, the corresponding linguistic representations are primed, and become easier to produce. Here we tested this theory by investigating whether pitch (F0) alignment shows two characteristic signatures of priming: dose dependence and persistence. In a virtual reality experiment, we manipulated the pitch of a virtual interlocutor's speech to find out (a.) whether participants accommodated to the agent's F0, (b.) whether the amount of accommodation increased with increasing exposure to the agent's speech, and (c.) whether changes to participants' F0 persisted beyond the conversation. Participants accommodated to the virtual interlocutor, but accommodation did not increase in strength over the conversation, and it disappeared immediately after the conversation ended. Results argue against a priming-based account of F0 accommodation, and indicate that an alternative mechanism is needed to explain alignment along continuous dimensions of language such as speech rate and pitch. -
Hagoort, P. (2016). MUC (Memory, Unification, Control): A Model on the Neurobiology of Language Beyond Single Word Processing. In G. Hickok, & S. Small (
Eds. ), Neurobiology of language (pp. 339-347). Amsterdam: Elsever. doi:10.1016/B978-0-12-407794-2.00028-6.Abstract
A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content. -
Hagoort, P. (2016). Zij zijn ons brein. In J. Brockman (
Ed. ), Machines die denken: Invloedrijke denkers over de komst van kunstmatige intelligentie (pp. 184-186). Amsterdam: Maven Publishing. -
Hartung, F., Burke, M., Hagoort, P., & Willems, R. M. (2016). Taking perspective: Personal pronouns affect experiential aspects of literary reading. PLoS One, 11(5): e0154732. doi:10.1371/journal.pone.0154732.
Abstract
Personal pronouns have been shown to influence cognitive perspective taking during comprehension. Studies using single sentences found that 3rd person pronouns facilitate the construction of a mental model from an observer’s perspective, whereas 2nd person pronouns support an actor’s perspective. The direction of the effect for 1st person pronouns seems to depend on the situational context. In the present study, we investigated how personal pronouns influence discourse comprehension when people read fiction stories and if this has consequences for affective components like emotion during reading or appreciation of the story. We wanted to find out if personal pronouns affect immersion and arousal, as well as appreciation of fiction. In a natural reading paradigm, we measured electrodermal activity and story immersion, while participants read literary stories with 1st and 3rd person pronouns referring to the protagonist. In addition, participants rated and ranked the stories for appreciation. Our results show that stories with 1st person pronouns lead to higher immersion. Two factors—transportation into the story world and mental imagery during reading—in particular showed higher scores for 1st person as compared to 3rd person pronoun stories. In contrast, arousal as measured by electrodermal activity seemed tentatively higher for 3rd person pronoun stories. The two measures of appreciation were not affected by the pronoun manipulation. Our findings underscore the importance of perspective for language processing, and additionally show which aspects of the narrative experience are influenced by a change in perspective. -
Kunert, R., Willems, R. M., & Hagoort, P. (2016). An independent psychometric evaluation of the PROMS measure of music perception skills. PLoS One, 11(7): e0159103. doi:10.1371/journal.pone.0159103.
Abstract
The Profile of Music Perception Skills (PROMS) is a recently developed measure of perceptual music skills which has been shown to have promising psychometric properties. In this paper we extend the evaluation of its brief version to three kinds of validity using an individual difference approach. The brief PROMS displays good discriminant validity with working memory, given that it does not correlate with backward digit span (r = .04). Moreover, it shows promising criterion validity (association with musical training (r = .45), musicianship status (r = .48), and self-rated musical talent (r = .51)). Finally, its convergent validity, i.e. relation to an unrelated measure of music perception skills, was assessed by correlating the brief PROMS to harmonic closure judgment accuracy. Two independent samples point to good convergent validity of the brief PROMS (r = .36; r = .40). The same association is still significant in one of the samples when including self-reported music skill in a partial correlation (rpartial = .30; rpartial = .17). Overall, the results show that the brief version of the PROMS displays a very good pattern of construct validity. Especially its tuning subtest stands out as a valuable part for music skill evaluations in Western samples. We conclude by briefly discussing the choice faced by music cognition researchers between different musical aptitude measures of which the brief PROMS is a well evaluated example.Additional information
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159103#sec015 -
Kunert, R., Willems, R. M., & Hagoort, P. (2016). Language influences music harmony perception: effects of shared syntactic integration resources beyond attention. Royal Society Open Science, 3(2): 150685. doi:10.1098/rsos.150685.
Abstract
Many studies have revealed shared music–language processing resources by finding an influence of music harmony manipulations on concurrent language processing. However, the nature of the shared resources has remained ambiguous. They have been argued to be syntax specific and thus due to shared syntactic integration resources. An alternative view regards them as related to general attention and, thus, not specific to syntax. The present experiments evaluated these accounts by investigating the influence of language on music. Participants were asked to provide closure judgements on harmonic sequences in order to assess the appropriateness of sequence endings. At the same time participants read syntactic garden-path sentences. Closure judgements revealed a change in harmonic processing as the result of reading a syntactically challenging word. We found no influence of an arithmetic control manipulation (experiment 1) or semantic garden-path sentences (experiment 2). Our results provide behavioural evidence for a specific influence of linguistic syntax processing on musical harmony judgements. A closer look reveals that the shared resources appear to be needed to hold a harmonic key online in some form of syntactic working memory or unification workspace related to the integration of chords and words. Overall, our results support the syntax specificity of shared music–language processing resources.Additional information
http://rsos.royalsocietypublishing.org/content/3/2/150685.figures-only -
Lam, N. H. L., Schoffelen, J.-M., Udden, J., Hulten, A., & Hagoort, P. (2016). Neural activity during sentence processing as reflected in theta, alpha, beta and gamma oscillations. NeuroImage, 142(15), 43-54. doi:10.1016/j.neuroimage.2016.03.007.
Abstract
We used magnetoencephalography (MEG) to explore the spatio-temporal dynamics of neural oscillations associated with sentence processing, in 102 participants. We quantified changes in oscillatory power as the sentence unfolded, and in response to individual words in the sentence. For words early in a sentence compared to those late in the same sentence, we observed differences in left temporal and frontal areas, and bilateral frontal and right parietal regions for the theta, alpha, and beta frequency bands. The neural response to words in a sentence differed from the response to words in scrambled sentences in left-lateralized theta, alpha, beta, and gamma. The theta band effects suggest that a sentential context facilitates lexical retrieval, and that this facilitation is stronger for words late in the sentence. Effects in the alpha and beta band may reflect the unification of semantic and syntactic information, and are suggestive of easier unification late in a sentence. The gamma oscillations are indicative of predicting the upcoming word during sentence processing. In conclusion, changes in oscillatory neuronal activity capture aspects of sentence processing. Our results support earlier claims that language (sentence) processing recruits areas distributed across both hemispheres, and extends beyond the classical language regionsAdditional information
http://www.sciencedirect.com/science/article/pii/S1053811916002032 -
Lockwood, G., Hagoort, P., & Dingemanse, M. (2016). How iconicity helps people learn new words: neural correlates and individual differences in sound-symbolic bootstrapping. Collabra, 2(1): 7. doi:10.1525/collabra.42.
Abstract
Sound symbolism is increasingly understood as involving iconicity, or perceptual analogies and cross-modal correspondences between form and meaning, but the search for its functional and neural correlates is ongoing. Here we study how people learn sound-symbolic words, using behavioural, electrophysiological and individual difference measures. Dutch participants learned Japanese ideophones —lexical sound-symbolic words— with a translation of either the real meaning (in which form and meaning show cross-modal correspondences) or the opposite meaning (in which form and meaning show cross-modal clashes). Participants were significantly better at identifying the words they learned in the real condition, correctly remembering the real word pairing 86.7% of the time, but the opposite word pairing only 71.3% of the time. Analysing event-related potentials (ERPs) during the test round showed that ideophones in the real condition elicited a greater P3 component and late positive complex than ideophones in the opposite condition. In a subsequent forced choice task, participants were asked to guess the real translation from two alternatives. They did this with 73.0% accuracy, well above chance level even for words they had encountered in the opposite condition, showing that people are generally sensitive to the sound-symbolic cues in ideophones. Individual difference measures showed that the ERP effect in the test round of the learning task was greater for participants who were more sensitive to sound symbolism in the forced choice task. The main driver of the difference was a lower amplitude of the P3 component in response to ideophones in the opposite condition, suggesting that people who are more sensitive to sound symbolism may have more difficulty to suppress conflicting cross-modal information. The findings provide new evidence that cross-modal correspondences between sound and meaning facilitate word learning, while cross-modal clashes make word learning harder, especially for people who are more sensitive to sound symbolism.Additional information
https://osf.io/ema3t/ -
Lockwood, G., Dingemanse, M., & Hagoort, P. (2016). Sound-symbolism boosts novel word learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(8), 1274-1281. doi:10.1037/xlm0000235.
Abstract
The existence of sound-symbolism (or a non-arbitrary link between form and meaning) is well-attested. However, sound-symbolism has mostly been investigated with nonwords in forced choice tasks, neither of which are representative of natural language. This study uses ideophones, which are naturally occurring sound-symbolic words that depict sensory information, to investigate how sensitive Dutch speakers are to sound-symbolism in Japanese in a learning task. Participants were taught 2 sets of Japanese ideophones; 1 set with the ideophones’ real meanings in Dutch, the other set with their opposite meanings. In Experiment 1, participants learned the ideophones and their real meanings much better than the ideophones with their opposite meanings. Moreover, despite the learning rounds, participants were still able to guess the real meanings of the ideophones in a 2-alternative forced-choice test after they were informed of the manipulation. This shows that natural language sound-symbolism is robust beyond 2-alternative forced-choice paradigms and affects broader language processes such as word learning. In Experiment 2, participants learned regular Japanese adjectives with the same manipulation, and there was no difference between real and opposite conditions. This shows that natural language sound-symbolism is especially strong in ideophones, and that people learn words better when form and meaning match. The highlights of this study are as follows: (a) Dutch speakers learn real meanings of Japanese ideophones better than opposite meanings, (b) Dutch speakers accurately guess meanings of Japanese ideophones, (c) this sensitivity happens despite learning some opposite pairings, (d) no such learning effect exists for regular Japanese adjectives, and (e) this shows the importance of sound-symbolism in scaffolding language learning -
Lockwood, G., Hagoort, P., & Dingemanse, M. (2016). Synthesized Size-Sound Sound Symbolism. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (
Eds. ), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 1823-1828). Austin, TX: Cognitive Science Society.Abstract
Studies of sound symbolism have shown that people can associate sound and meaning in consistent ways when presented with maximally contrastive stimulus pairs of nonwords such as bouba/kiki (rounded/sharp) or mil/mal (small/big). Recent work has shown the effect extends to antonymic words from natural languages and has proposed a role for shared cross-modal correspondences in biasing form-to-meaning associations. An important open question is how the associations work, and particularly what the role is of sound-symbolic matches versus mismatches. We report on a learning task designed to distinguish between three existing theories by using a spectrum of sound-symbolically matching, mismatching, and neutral (neither matching nor mismatching) stimuli. Synthesized stimuli allow us to control for prosody, and the inclusion of a neutral condition allows a direct test of competing accounts. We find evidence for a sound-symbolic match boost, but not for a mismatch difficulty compared to the neutral condition.Additional information
https://mindmodeling.org/cogsci2016/papers/0319/index.html -
Schoot, L., Heyselaar, E., Hagoort, P., & Segaert, K. (2016). Does syntactic alignment effectively influence how speakers are perceived by their conversation partner. PLoS One, 11(4): e015352. doi:10.1371/journal.pone.0153521.
Abstract
The way we talk can influence how we are perceived by others. Whereas previous studies have started to explore the influence of social goals on syntactic alignment, in the current study, we additionally investigated whether syntactic alignment effectively influences conversation partners’ perception of the speaker. To this end, we developed a novel paradigm in which we can measure the effect of social goals on the strength of syntactic alignment for one participant (primed participant), while simultaneously obtaining usable social opinions about them from their conversation partner (the evaluator). In Study 1, participants’ desire to be rated favorably by their partner was manipulated by assigning pairs to a Control (i.e., primed participants did not know they were being evaluated) or Evaluation context (i.e., primed participants knew they were being evaluated). Surprisingly, results showed no significant difference in the strength with which primed participants aligned their syntactic choices with their partners’ choices. In a follow-up study, we used a Directed Evaluation context (i.e., primed participants knew they were being evaluated and were explicitly instructed to make a positive impression). However, again, there was no evidence supporting the hypothesis that participants’ desire to impress their partner influences syntactic alignment. With respect to the influence of syntactic alignment on perceived likeability by the evaluator, a negative relationship was reported in Study 1: the more primed participants aligned their syntactic choices with their partner, the more that partner decreased their likeability rating after the experiment. However, this effect was not replicated in the Directed Evaluation context of Study 2. In other words, our results do not support the conclusion that speakers’ desire to be liked affects how much they align their syntactic choices with their partner, nor is there convincing evidence that there is a reliable relationship between syntactic alignment and perceived likeability.Additional information
Data availability -
Schoot, L., Hagoort, P., & Segaert, K. (2016). What can we learn from a two-brain approach to verbal interaction? Neuroscience and Biobehavioral Reviews, 68, 454-459. doi:10.1016/j.neubiorev.2016.06.009.
Abstract
Verbal interaction is one of the most frequent social interactions humans encounter on a daily basis. In the current paper, we zoom in on what the multi-brain approach has contributed, and can contribute in the future, to our understanding of the neural mechanisms supporting verbal interaction. Indeed, since verbal interaction can only exist between individuals, it seems intuitive to focus analyses on inter-individual neural markers, i.e. between-brain neural coupling. To date, however, there is a severe lack of theoretically-driven, testable hypotheses about what between-brain neural coupling actually reflects. In this paper, we develop a testable hypothesis in which between-pair variation in between-brain neural coupling is of key importance. Based on theoretical frameworks and empirical data, we argue that the level of between-brain neural coupling reflects speaker-listener alignment at different levels of linguistic and extra-linguistic representation. We discuss the possibility that between-brain neural coupling could inform us about the highest level of inter-speaker alignment: mutual understanding -
Segaert, K., Wheeldon, L., & Hagoort, P. (2016). Unifying structural priming effects on syntactic choices and timing of sentence generation. Journal of Memory and Language, 91, 59-80. doi:10.1016/j.jml.2016.03.011.
Abstract
We investigated whether structural priming of production latencies is sensitive to the same factors known to influence persistence of structural choices: structure preference, cumulativity and verb repetition. In two experiments, we found structural persistence only for passives (inverse preference effect) while priming effects on latencies were stronger for the actives (positive preference effect). We found structural persistence for passives to be influenced by immediate primes and long lasting cumulativity (all preceding primes) (Experiment 1), and to be boosted by verb repetition (Experiment 2). In latencies we found effects for actives were sensitive to long lasting cumulativity (Experiment 1). In Experiment 2, in latencies we found priming for actives overall, while for passives the priming effects emerged as the cumulative exposure increased but only when also aided by verb repetition. These findings are consistent with the Two-stage Competition model, an integrated model of structural priming effects for sentence choice and latency -
Tromp, J., Hagoort, P., & Meyer, A. S. (2016). Pupillometry reveals increased pupil size during indirect request comprehension. Quarterly Journal of Experimental Psychology, 69, 1093-1108. doi:10.1080/17470218.2015.1065282.
Abstract
Fluctuations in pupil size have been shown to reflect variations in processing demands during lexical and syntactic processing in language comprehension. An issue that has not received attention is whether pupil size also varies due to pragmatic manipulations. In two pupillometry experiments, we investigated whether pupil diameter was sensitive to increased processing demands as a result of comprehending an indirect request versus a direct statement. Adult participants were presented with 120 picture–sentence combinations that could be interpreted either as an indirect request (a picture of a window with the sentence “it's very hot here”) or as a statement (a picture of a window with the sentence “it's very nice here”). Based on the hypothesis that understanding indirect utterances requires additional inferences to be made on the part of the listener, we predicted a larger pupil diameter for indirect requests than statements. The results of both experiments are consistent with this expectation. We suggest that the increase in pupil size reflects additional processing demands for the comprehension of indirect requests as compared to statements. This research demonstrates the usefulness of pupillometry as a tool for experimental research in pragmatics -
Vanlangendonck, F., Willems, R. M., Menenti, L., & Hagoort, P. (2016). An early influence of common ground during speech planning. Language, Cognition and Neuroscience, 31(6), 741-750. doi:10.1080/23273798.2016.1148747.
Abstract
In order to communicate successfully, speakers have to take into account which information they share with their addressee, i.e. common ground. In the current experiment we investigated how and when common ground affects speech planning by tracking speakers’ eye movements while they played a referential communication game. We found evidence that common ground exerts an early, but incomplete effect on speech planning. In addition, we did not find longer planning times when speakers had to take common ground into account, suggesting that taking common ground into account is not necessarily an effortful process. Common ground information thus appears to act as a partial constraint on language production that is integrated flexibly and efficiently in the speech planning process.Additional information
http://www.tandfonline.com/doi/figure/10.1080/23273798.2016.1148747 -
Weber, K., Christiansen, M., Petersson, K. M., Indefrey, P., & Hagoort, P. (2016). fMRI syntactic and lexical repetition effects reveal the initial stages of learning a new language. The Journal of Neuroscience, 36, 6872-6880. doi:10.1523/JNEUROSCI.3180-15.2016.
Abstract
When learning a new language, we build brain networks to process and represent the acquired words and syntax and integrate these with existing language representations. It is an open question whether the same or different neural mechanisms are involved in learning and processing a novel language compared to the native language(s). Here we investigated the neural repetition effects of repeating known and novel word orders while human subjects were in the early stages of learning a new language. Combining a miniature language with a syntactic priming paradigm, we examined the neural correlates of language learning online using functional magnetic resonance imaging (fMRI). In left inferior frontal gyrus (LIFG) and posterior temporal cortex the repetition of novel syntactic structures led to repetition enhancement, while repetition of known structures resulted in repetition suppression. Additional verb repetition led to an
increase in the syntactic repetition enhancement effect in language-related brain regions. Similarly the repetition of verbs led to repetition enhancement effects in areas related to lexical and semantic processing, an effect that continued to increase in a subset of these regions. Repetition enhancement might reflect a mechanism to build and strengthen a neural network to process novel syntactic structures and lexical items. By contrast, the observed repetition suppression points to overlapping neural mechanisms for native and new language constructions when these have sufficient structural similarities. -
Weber, K., Luther, L., Indefrey, P., & Hagoort, P. (2016). Overlap and differences in brain networks underlying the processing of complex sentence structures in second language users compared to native speakers. Brain Connectivity, 6(4), 345-355. doi:10.1089/brain.2015.0383.
Abstract
When we learn a second language later in life do we integrate it with the established neural networks in place for the first language or is at least a partially new network recruited? While there is evidence that simple grammatical structures in a second language share a system with the native language, the story becomes more multifaceted for complex sentence structures. In this study we investigated the underlying brain networks in native speakers compared to proficient second language users while processing complex sentences. As hypothesized, complex structures were processed by the same large-scale inferior frontal and middle temporal language networks of the brain in the second language, as seen in native speakers. These effects were seen both in activations as well as task-related connectivity patterns. Furthermore, the second language users showed increased task-related connectivity from inferior frontal to inferior parietal regions of the brain, regions related to attention and cognitive control, suggesting less automatic processing for these structures in a second language. -
Willems, R. M., Frank, S. L., Nijhoff, A. D., Hagoort, P., & Van den Bosch, A. (2016). Prediction during natural language comprehension. Cerebral Cortex, 26(6), 2506-2516. doi:10.1093/cercor/bhv075.
Abstract
The notion of prediction is studied in cognitive neuroscience with increasing intensity. We investigated the neural basis of 2 distinct aspects of word prediction, derived from information theory, during story comprehension. We assessed the effect of entropy of next-word probability distributions as well as surprisal. A computational model determined entropy and surprisal for each word in 3 literary stories. Twenty-four healthy participants listened to the same 3 stories while their brain activation was measured using fMRI. Reversed speech fragments were presented as a control condition. Brain areas sensitive to entropy were left ventral premotor cortex, left middle frontal gyrus, right inferior frontal gyrus, left inferior parietal lobule, and left supplementary motor area. Areas sensitive to surprisal were left inferior temporal sulcus (“visual word form area”), bilateral superior temporal gyrus, right amygdala, bilateral anterior temporal poles, and right inferior frontal sulcus. We conclude that prediction during language comprehension can occur at several levels of processing, including at the level of word form. Our study exemplifies the power of combining computational linguistics with cognitive neuroscience, and additionally underlines the feasibility of studying continuous spoken language materials with fMRI.Additional information
Supplementary Material -
Asaridou, S. S., Hagoort, P., & McQueen, J. M. (2015). Effects of early bilingual experience with a tone and a non-tone language on speech-music. PLoS One, 10(12): e0144225. doi:10.1371/journal.pone.0144225.
Abstract
We investigated music and language processing in a group of early bilinguals who spoke a tone language and a non-tone language (Cantonese and Dutch). We assessed online speech-music processing interactions, that is, interactions that occur when speech and music are processed simultaneously in songs, with a speeded classification task. In this task, participants judged sung pseudowords either musically (based on the direction of the musical interval) or phonologically (based on the identity of the sung vowel). We also assessed longer-term effects of linguistic experience on musical ability, that is, the influence of extensive prior experience with language when processing music. These effects were assessed with a task in which participants had to learn to identify musical intervals and with four pitch-perception tasks. Our hypothesis was that due to their experience in two different languages using lexical versus intonational tone, the early Cantonese-Dutch bilinguals would outperform the Dutch control participants. In online processing, the Cantonese-Dutch bilinguals processed speech and music more holistically than controls. This effect seems to be driven by experience with a tone language, in which integration of segmental and pitch information is fundamental. Regarding longer-term effects of linguistic experience, we found no evidence for a bilingual advantage in either the music-interval learning task or the pitch-perception tasks. Together, these results suggest that being a Cantonese-Dutch bilingual does not have any measurable longer-term effects on pitch and music processing, but does have consequences for how speech and music are processed jointly.Additional information
Data Availability -
Baggio, G., van Lambalgen, M., & Hagoort, P. (2015). Logic as Marr's computational level: Four case studies. Topics in Cognitive Science, 7, 287-298. doi:10.1111/tops.12125.
Abstract
We sketch four applications of Marr's levels-of-analysis methodology to the relations between logic and experimental data in the cognitive neuroscience of language and reasoning. The first part of the paper illustrates the explanatory power of computational level theories based on logic. We show that a Bayesian treatment of the suppression task in reasoning with conditionals is ruled out by EEG data, supporting instead an analysis based on defeasible logic. Further, we describe how results from an EEG study on temporal prepositions can be reanalyzed using formal semantics, addressing a potential confound. The second part of the article demonstrates the predictive power of logical theories drawing on EEG data on processing progressive constructions and on behavioral data on conditional reasoning in people with autism. Logical theories can constrain processing hypotheses all the way down to neurophysiology, and conversely neuroscience data can guide the selection of alternative computational level models of cognition. -
Bašnákova, J., Van Berkum, J. J. A., Weber, K., & Hagoort, P. (2015). A job interview in the MRI scanner: How does indirectness affect addressees and overhearers? Neuropsychologia, 76, 79-91. doi:10.1016/j.neuropsychologia.2015.03.030.
Abstract
In using language, people not only exchange information, but also navigate their social world – for example, they can express themselves indirectly to avoid losing face. In this functional magnetic resonance imaging study, we investigated the neural correlates of interpreting face-saving indirect replies, in a situation where participants only overheard the replies as part of a conversation between two other people, as well as in a situation where the participants were directly addressed themselves. We created a fictional job interview context where indirect replies serve as a natural communicative strategy to attenuate one’s shortcomings, and asked fMRI participants to either pose scripted questions and receive answers from three putative job candidates (addressee condition) or to listen to someone else interview the same candidates (overhearer condition). In both cases, the need to evaluate the candidate ensured that participants had an active interest in comprehending the replies. Relative to direct replies, face-saving indirect replies increased activation in medial prefrontal cortex, bilateral temporo-parietal junction (TPJ), bilateral inferior frontal gyrus and bilateral middle temporal gyrus, in active overhearers and active addressees alike, with similar effect size, and comparable to findings obtained in an earlier passive listening study (Bašnáková et al., 2013). In contrast, indirectness effects in bilateral anterior insula and pregenual ACC, two regions implicated in emotional salience and empathy, were reliably stronger in addressees than in active overhearers. Our findings indicate that understanding face-saving indirect language requires additional cognitive perspective-taking and other discourse-relevant cognitive processing, to a comparable extent in active overhearers and addressees. Furthermore, they indicate that face-saving indirect language draws upon affective systems more in addressees than in overhearers, presumably because the addressee is the one being managed by a face-saving reply. In all, face-saving indirectness provides a window on the cognitive as well as affect-related neural systems involved in human communication.Additional information
http://www.sciencedirect.com/science/article/pii/S0028393215001414 -
Bastiaansen, M. C. M., & Hagoort, P. (2015). Frequency-based segregation of syntactic and semantic unification during online sentence level language comprehension. Journal of Cognitive Neuroscience, 27(11), 2095-2107. doi:10.1162/jocn_a_00829.
Abstract
During sentence level language comprehension, semantic and syntactic unification are functionally distinct operations. Nevertheless, both recruit roughly the same brain areas (spatially overlapping networks in the left frontotemporal cortex) and happen at the same time (in the first few hundred milliseconds after word onset). We tested the hypothesis that semantic and syntactic unification are segregated by means of neuronal synchronization of the functionally relevant networks in different frequency ranges: gamma (40 Hz and up) for semantic unification and lower beta (10–20 Hz) for syntactic unification. EEG power changes were quantified as participants read either correct sentences, syntactically correct though meaningless sentences (syntactic prose), or sentences that did not contain any syntactic structure (random word lists). Other sentences contained either a semantic anomaly or a syntactic violation at a critical word in the sentence. Larger EEG gamma-band power was observed for semantically coherent than for semantically anomalous sentences. Similarly, beta-band power was larger for syntactically correct sentences than for incorrect ones. These results confirm the existence of a functional dissociation in EEG oscillatory dynamics during sentence level language comprehension that is compatible with the notion of a frequency-based segregation of syntactic and semantic unification. -
Francken, J. C., Meijs, E. L., Ridderinkhof, O. M., Hagoort, P., de Lange, F. P., & van Gaal, S. (2015). Manipulating word awareness dissociates feed-forward from feedback models of language-perception interactions. Neuroscience of consciousness, 1. doi:10.1093/nc/niv003.
Abstract
Previous studies suggest that linguistic material can modulate visual perception, but it is unclear at which level of processing these interactions occur. Here we aim to dissociate between two competing models of language–perception interactions: a feed-forward and a feedback model. We capitalized on the fact that the models make different predictions on the role of feedback. We presented unmasked (aware) or masked (unaware) words implying motion (e.g. “rise,” “fall”), directly preceding an upward or downward visual motion stimulus. Crucially, masking leaves intact feed-forward information processing from low- to high-level regions, whereas it abolishes subsequent feedback. Under this condition, participants remained faster and more accurate when the direction implied by the motion word was congruent with the direction of the visual motion stimulus. This suggests that language–perception interactions are driven by the feed-forward convergence of linguistic and perceptual information at higher-level conceptual and decision stages. -
Francken, J. C., Meijs, E. L., Hagoort, P., van Gaal, S., & de Lange, F. P. (2015). Exploring the automaticity of language-perception interactions: Effects of attention and awareness. Scientific Reports, 5: 17725. doi:10.1038/srep17725.
Abstract
Previous studies have shown that language can modulate visual perception, by biasing and/
or enhancing perceptual performance. However, it is still debated where in the brain visual and
linguistic information are integrated, and whether the effects of language on perception are
automatic and persist even in the absence of awareness of the linguistic material. Here, we aimed
to explore the automaticity of language-perception interactions and the neural loci of these
interactions in an fMRI study. Participants engaged in a visual motion discrimination task (upward
or downward moving dots). Before each trial, a word prime was briefly presented that implied
upward or downward motion (e.g., “rise”, “fall”). These word primes strongly influenced behavior:
congruent motion words sped up reaction times and improved performance relative to incongruent
motion words. Neural congruency effects were only observed in the left middle temporal gyrus,
showing higher activity for congruent compared to incongruent conditions. This suggests that higherlevel
conceptual areas rather than sensory areas are the locus of language-perception interactions.
When motion words were rendered unaware by means of masking, they still affected visual motion
perception, suggesting that language-perception interactions may rely on automatic feed-forward
integration of perceptual and semantic material in language areas of the brain.Additional information
srep17725-s1.pdf http://www.nature.com/articles/srep17725#supplementary-information -
Francken, J. C., Kok, P., Hagoort, P., & De Lange, F. P. (2015). The behavioral and neural effects of language on motion perception. Journal of Cognitive Neuroscience, 27(1), 175-184. doi:10.1162/jocn_a_00682.
Abstract
Perception does not function as an isolated module but is tightly linked with other cognitive functions. Several studies have demonstrated an influence of language on motion perception, but it remains debated at which level of processing this modulation takes place. Some studies argue for an interaction in perceptual areas, but it is also possible that the interaction is mediated by "language areas" that integrate linguistic and visual information. Here, we investigated whether language-perception interactions were specific to the language-dominant left hemisphere by comparing the effects of language on visual material presented in the right (RVF) and left visual fields (LVF). Furthermore, we determined the neural locus of the interaction using fMRI. Participants performed a visual motion detection task. On each trial, the visual motion stimulus was presented in either the LVF or in the RVF, preceded by a centrally presented word (e.g., "rise"). The word could be congruent, incongruent, or neutral with regard to the direction of the visual motion stimulus that was presented subsequently. Participants were faster and more accurate when the direction implied by the motion word was congruent with the direction of the visual motion stimulus. Interestingly, the speed benefit was present only for motion stimuli that were presented in the RVF. We observed a neural counterpart of the behavioral facilitation effects in the left middle temporal gyrus, an area involved in semantic processing of verbal material. Together, our results suggest that semantic information about motion retrieved in language regions may automatically modulate perceptual decisions about motion. -
Franken, M. K., McQueen, J. M., Hagoort, P., & Acheson, D. J. (2015). Assessing the link between speech perception and production through individual differences. In Proceedings of the 18th International Congress of Phonetic Sciences. Glasgow: the University of Glasgow.
Abstract
This study aims to test a prediction of recent
theoretical frameworks in speech motor control: if speech production targets are specified in auditory
terms, people with better auditory acuity should have more precise speech targets.
To investigate this, we had participants perform speech perception and production tasks in a counterbalanced order. To assess speech perception acuity, we used an adaptive speech discrimination
task. To assess variability in speech production, participants performed a pseudo-word reading task; formant values were measured for each recording.
We predicted that speech production variability to correlate inversely with discrimination performance.
The results suggest that people do vary in their production and perceptual abilities, and that better discriminators have more distinctive vowel production targets, confirming our prediction. This
study highlights the importance of individual
differences in the study of speech motor control, and sheds light on speech production-perception interaction. -
Franken, M. K., Hagoort, P., & Acheson, D. J. (2015). Modulations of the auditory M100 in an Imitation Task. Brain and Language, 142, 18-23. doi:10.1016/j.bandl.2015.01.001.
Abstract
Models of speech production explain event-related suppression of the auditory cortical
response as reflecting a comparison between auditory predictions and feedback. The present MEG
study was designed to test two predictions from this framework: 1) whether the reduced auditory
response varies as a function of the mismatch between prediction and feedback; 2) whether individual
variation in this response is predictive of speech-motor adaptation.
Participants alternated between online imitation and listening tasks. In the imitation task, participants
began each trial producing the same vowel (/e/) and subsequently listened to and imitated auditorilypresented
vowels varying in acoustic distance from /e/.
Results replicated suppression, with a smaller M100 during speaking than listening. Although we did
not find unequivocal support for the first prediction, participants with less M100 suppression were
better at the imitation task. These results are consistent with the enhancement of M100 serving as an
error signal to drive subsequent speech-motor adaptation. -
Guadalupe, T., Zwiers, M. P., Wittfeld, K., Teumer, A., Vasquez, A. A., Hoogman, M., Hagoort, P., Fernandez, G., Buitelaar, J., van Bokhoven, H., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S. E., Grabe, H. J., & Francks, C. (2015). Asymmetry within and around the human planum temporale is sexually dimorphic and influenced by genes involved in steroid hormone receptor activity. Cortex, 62, 41-55. doi:10.1016/j.cortex.2014.07.015.
Abstract
The genetic determinants of cerebral asymmetries are unknown. Sex differences in asymmetry of the planum temporale, that overlaps Wernicke’s classical language area, have been inconsistently reported. Meta-analysis of previous studies has suggested that publication bias established this sex difference in the literature. Using probabilistic definitions of cortical regions we screened over the cerebral cortex for sexual dimorphisms of asymmetry in 2337 healthy subjects, and found the planum temporale to show the strongest sex-linked asymmetry of all regions, which was supported by two further datasets, and also by analysis with the Freesurfer package that performs automated parcellation of cerebral cortical regions. We performed a genome-wide association scan meta-analysis of planum temporale asymmetry in a pooled sample of 3095 subjects, followed by a candidate-driven approach which measured a significant enrichment of association in genes of the ´steroid hormone receptor activity´ and 'steroid metabolic process' pathways. Variants in the genes and pathways identified may affect the role of the planum temporale in language cognition.Additional information
http://www.sciencedirect.com/science/article/pii/S0010945214002469#appd001 -
Hagoort, P. (2015). Het talige brein. In A. Aleman, & H. E. Hulshoff Pol (
Eds. ), Beeldvorming van het brein: Imaging voor psychiaters en psychologen (pp. 169-176). Utrecht: De Tijdstroom. -
Hagoort, P. (2015). Spiegelneuronen. In J. Brockmann (
Ed. ), Wetenschappelijk onkruid: 179 hardnekkige ideeën die vooruitgang blokkeren (pp. 455-457). Amsterdam: Maven Publishing. -
Holler, J., Kokal, I., Toni, I., Hagoort, P., Kelly, S. D., & Ozyurek, A. (2015). Eye’m talking to you: Speakers’ gaze direction modulates co-speech gesture processing in the right MTG. Social Cognitive & Affective Neuroscience, 10, 255-261. doi:10.1093/scan/nsu047.
Abstract
Recipients process information from speech and co-speech gestures, but it is currently unknown how this processing is influenced by the presence of other important social cues, especially gaze direction, a marker of communicative intent. Such cues may modulate neural activity in regions associated either with the processing of ostensive cues, such as eye gaze, or with the processing of semantic information, provided by speech and gesture.
Participants were scanned (fMRI) while taking part in triadic communication involving two recipients and a speaker. The speaker uttered sentences that
were and were not accompanied by complementary iconic gestures. Crucially, the speaker alternated her gaze direction, thus creating two recipient roles: addressed (direct gaze) vs unaddressed (averted gaze) recipient. The comprehension of Speech&Gesture relative to SpeechOnly utterances recruited middle occipital, middle temporal and inferior frontal gyri, bilaterally. The calcarine sulcus and posterior cingulate cortex were sensitive to differences between direct and averted gaze. Most importantly, Speech&Gesture utterances, but not SpeechOnly utterances, produced additional activity in the right middle temporal gyrus when participants were addressed. Marking communicative intent with gaze direction modulates the processing of speech–gesture utterances in cerebral areas typically associated with the semantic processing of multi-modal communicative acts. -
Kunert, R., Willems, R. M., Casasanto, D., Patel, A. D., & Hagoort, P. (2015). Music and language syntax interact in Broca’s Area: An fMRI study. PLoS One, 10(11): e0141069. doi:10.1371/journal.pone.0141069.
Abstract
Instrumental music and language are both syntactic systems, employing complex, hierarchically-structured sequences built using implicit structural norms. This organization allows listeners to understand the role of individual words or tones in the context of an unfolding sentence or melody. Previous studies suggest that the brain mechanisms of syntactic processing may be partly shared between music and language. However, functional neuroimaging evidence for anatomical overlap of brain activity involved in linguistic and musical syntactic processing has been lacking. In the present study we used functional magnetic resonance imaging (fMRI) in conjunction with an interference paradigm based on sung sentences. We show that the processing demands of musical syntax (harmony) and language syntax interact in Broca’s area in the left inferior frontal gyrus (without leading to music and language main effects). A language main effect in Broca’s area only emerged in the complex music harmony condition, suggesting that (with our stimuli and tasks) a language effect only becomes visible under conditions of increased demands on shared neural resources. In contrast to previous studies, our design allows us to rule out that the observed neural interaction is due to: (1) general attention mechanisms, as a psychoacoustic auditory anomaly behaved unlike the harmonic manipulation, (2) error processing, as the language and the music stimuli contained no structural errors. The current results thus suggest that two different cognitive domains—music and language—might draw on the same high level syntactic integration resources in Broca’s area.Additional information
http://hdl.handle.net/1839/00-0000-0000-0020-72EB-9@view -
Lai, V. T., Willems, R. M., & Hagoort, P. (2015). Feel between the Lines: Implied emotion from combinatorial semantics. Journal of Cognitive Neuroscience, 27(8), 1528-1541. doi:10.1162/jocn_a_00798.
Abstract
This study investigated the brain regions for the comprehension of implied emotion in sentences. Participants read negative sentences without negative words, for example, “The boy fell asleep and never woke up again,” and their neutral counterparts “The boy stood up and grabbed his bag.” This kind of negative sentence allows us to examine implied emotion derived at the sentence level, without associative emotion coming from word retrieval. We found that implied emotion in sentences, relative to neutral sentences, led to activation in some emotion-related areas, including the medial prefrontal cortex, the amygdala, and the insula, as well as certain language-related areas, including the inferior frontal gyrus, which has been implicated in combinatorial processing. These results suggest that the emotional network involved in implied emotion is intricately related to the network for combinatorial processing in language, supporting the view that sentence meaning is more than simply concatenating the meanings of its lexical building blocks. -
Peeters, D., Chu, M., Holler, J., Hagoort, P., & Ozyurek, A. (2015). Electrophysiological and kinematic correlates of communicative intent in the planning and production of pointing gestures and speech. Journal of Cognitive Neuroscience, 27(12), 2352-2368. doi:10.1162/jocn_a_00865.
Abstract
In everyday human communication, we often express our communicative intentions by manually pointing out referents in the material world around us to an addressee, often in tight synchronization with referential speech. This study investigated whether and how the kinematic form of index finger pointing gestures is shaped by the gesturer's communicative intentions and how this is modulated by the presence of concurrently produced speech. Furthermore, we explored the neural mechanisms underpinning the planning of communicative pointing gestures and speech. Two experiments were carried out in which participants pointed at referents for an addressee while the informativeness of their gestures and speech was varied. Kinematic and electrophysiological data were recorded online. It was found that participants prolonged the duration of the stroke and poststroke hold phase of their gesture to be more communicative, in particular when the gesture was carrying the main informational burden in their multimodal utterance. Frontal and P300 effects in the ERPs suggested the importance of intentional and modality-independent attentional mechanisms during the planning phase of informative pointing gestures. These findings contribute to a better understanding of the complex interplay between action, attention, intention, and language in the production of pointing gestures, a communicative act core to human interaction. -
Peeters, D., Hagoort, P., & Ozyurek, A. (2015). Electrophysiological evidence for the role of shared space in online comprehension of spatial demonstratives. Cognition, 136, 64-84. doi:10.1016/j.cognition.2014.10.010.
Abstract
A fundamental property of language is that it can be used to refer to entities in the extra-linguistic physical context of a conversation in order to establish a joint focus of attention on a referent. Typological and psycholinguistic work across a wide range of languages has put forward at least two different theoretical views on demonstrative reference. Here we contrasted and tested these two accounts by investigating the electrophysiological brain activity underlying the construction of indexical meaning in comprehension. In two EEG experiments, participants watched pictures of a speaker who referred to one of two objects using speech and an index-finger pointing gesture. In contrast with separately collected native speakers’ linguistic intuitions, N400 effects showed a preference for a proximal demonstrative when speaker and addressee were in a face-to-face orientation and all possible referents were located in the shared space between them, irrespective of the physical proximity of the referent to the speaker. These findings reject egocentric proximity-based accounts of demonstrative reference, support a sociocentric approach to deixis, suggest that interlocutors construe a shared space during conversation, and imply that the psychological proximity of a referent may be more important than its physical proximity. -
Peeters, D., Snijders, T. M., Hagoort, P., & Ozyurek, A. (2015). The role of left inferior frontal Gyrus in the integration of point- ing gestures and speech. In G. Ferré, & M. Tutton (
Eds. ), Proceedings of the4th GESPIN - Gesture & Speech in Interaction Conference. Nantes: Université de Nantes.Abstract
Comprehension of pointing gestures is fundamental to human communication. However, the neural mechanisms
that subserve the integration of pointing gestures and speech in visual contexts in comprehension
are unclear. Here we present the results of an fMRI study in which participants watched images of an
actor pointing at an object while they listened to her referential speech. The use of a mismatch paradigm
revealed that the semantic unication of pointing gesture and speech in a triadic context recruits left
inferior frontal gyrus. Complementing previous ndings, this suggests that left inferior frontal gyrus
semantically integrates information across modalities and semiotic domains. -
Samur, D., Lai, V. T., Hagoort, P., & Willems, R. M. (2015). Emotional context modulates embodied metaphor comprehension. Neuropsychologia, 78, 108-114. doi:10.1016/j.neuropsychologia.2015.10.003.
Abstract
Emotions are often expressed metaphorically, and both emotion and metaphor are ways through which abstract meaning can be grounded in language. Here we investigate specifically whether motion-related verbs when used metaphorically are differentially sensitive to a preceding emotional context, as compared to when they are used in a literal manner. Participants read stories that ended with ambiguous action/motion sentences (e.g., he got it), in which the action/motion could be interpreted metaphorically (he understood the idea) or literally (he caught the ball) depending on the preceding story. Orthogonal to the metaphorical manipulation, the stories were high or low in emotional content. The results showed that emotional context modulated the neural response in visual motion areas to the metaphorical interpretation of the sentences, but not to their literal interpretations. In addition, literal interpretations of the target sentences led to stronger activation in the visual motion areas as compared to metaphorical readings of the sentences. We interpret our results as suggesting that emotional context specifically modulates mental simulation during metaphor processing -
Simanova, I., Van Gerven, M. A., Oostenveld, R., & Hagoort, P. (2015). Predicting the semantic category of internally generated words from neuromagnetic recordings. Journal of Cognitive Neuroscience, 27(1), 35-45. doi:10.1162/jocn_a_00690.
Abstract
In this study, we explore the possibility to predict the semantic category of words from brain signals in a free word generation task. Participants produced single words from different semantic categories in a modified semantic fluency task. A Bayesian logistic regression classifier was trained to predict the semantic category of words from single-trial MEG data. Significant classification accuracies were achieved using sensor-level MEG time series at the time interval of conceptual preparation. Semantic category prediction was also possible using source-reconstructed time series, based on minimum norm estimates of cortical activity. Brain regions that contributed most to classification on the source level were identified. These were the left inferior frontal gyrus, left middle frontal gyrus, and left posterior middle temporal gyrus. Additionally, the temporal dynamics of brain activity underlying the semantic preparation during word generation was explored. These results provide important insights about central aspects of language production -
Xiang, H., Van Leeuwen, T. M., Dediu, D., Roberts, L., Norris, D. G., & Hagoort, P. (2015). L2-proficiency-dependent laterality shift in structural connectivity of brain language pathways. Brain Connectivity, 5(6), 349-361. doi:10.1089/brain.2013.0199.
Abstract
Diffusion tensor imaging (DTI) and a longitudinal language learning approach were applied to investigate the relationship between the achieved second language (L2) proficiency during L2 learning and the reorganization of structural connectivity between core language areas. Language proficiency tests and DTI scans were obtained from German students before and after they completed an intensive 6-week course of the Dutch language. In the initial learning stage, with increasing L2 proficiency, the hemispheric dominance of the BA6-temporal pathway (mainly along the arcuate fasciculus) shifted from the left to the right hemisphere. With further increased proficiency, however, lateralization dominance was again found in the left BA6-temporal pathway. This result is consistent with reports in the literature that imply a stronger involvement of the right hemisphere in L2-processing especially for less proficient L2-speakers. This is the first time that a L2-proficiency-dependent laterality shift in structural connectivity of language pathways during L2 acquisition has been observed to shift from left to right, and back to left hemisphere dominance with increasing L2-proficiency. We additionally find that changes in fractional anisotropy values after the course are related to the time elapsed between the two scans. The results suggest that structural connectivity in (at least part of) the perisylvian language network may be subject to fast dynamic changes following language learning -
Acheson, D. J., & Hagoort, P. (2014). Twisting tongues to test for conflict monitoring in speech production. Frontiers in Human Neuroscience, 8: 206. doi:10.3389/fnhum.2014.00206.
Abstract
A number of recent studies have hypothesized that monitoring in speech production may occur via domain-general mechanisms responsible for the detection of response conflict. Outside of language, two ERP components have consistently been elicited in conflict-inducing tasks (e.g., the flanker task): the stimulus-locked N2 on correct trials, and the response-locked error-related negativity (ERN). The present investigation used these electrophysiological markers to test whether a common response conflict monitor is responsible for monitoring in speech and non-speech tasks. Electroencephalography (EEG) was recorded while participants performed a tongue twister (TT) task and a manual version of the flanker task. In the TT task, people rapidly read sequences of four nonwords arranged in TT and non-TT patterns three times. In the flanker task, people responded with a left/right button press to a center-facing arrow, and conflict was manipulated by the congruency of the flanking arrows. Behavioral results showed typical effects of both tasks, with increased error rates and slower speech onset times for TT relative to non-TT trials and for incongruent relative to congruent flanker trials. In the flanker task, stimulus-locked EEG analyses replicated previous results, with a larger N2 for incongruent relative to congruent trials, and a response-locked ERN. In the TT task, stimulus-locked analyses revealed broad, frontally-distributed differences beginning around 50 ms and lasting until just before speech initiation, with TT trials more negative than non-TT trials; response-locked analyses revealed an ERN. Correlation across these measures showed some correlations within a task, but little evidence of systematic cross-task correlation. Although the present results do not speak against conflict signals from the production system serving as cues to self-monitoring, they are not consistent with signatures of response conflict being mediated by a single, domain-general conflict monitor -
Basnakova, J., Weber, K., Petersson, K. M., Van Berkum, J. J. A., & Hagoort, P. (2014). Beyond the language given: The neural correlates of inferring speaker meaning. Cerebral Cortex, 24(10), 2572-2578. doi:10.1093/cercor/bht112.
Abstract
Even though language allows us to say exactly what we mean, we often use language to say things indirectly, in a way that depends on the specific communicative context. For example, we can use an apparently straightforward sentence like "It is hard to give a good presentation" to convey deeper meanings, like "Your talk was a mess!" One of the big puzzles in language science is how listeners work out what speakers really mean, which is a skill absolutely central to communication. However, most neuroimaging studies of language comprehension have focused on the arguably much simpler, context-independent process of understanding direct utterances. To examine the neural systems involved in getting at contextually constrained indirect meaning, we used functional magnetic resonance imaging as people listened to indirect replies in spoken dialog. Relative to direct control utterances, indirect replies engaged dorsomedial prefrontal cortex, right temporo-parietal junction and insula, as well as bilateral inferior frontal gyrus and right medial temporal gyrus. This suggests that listeners take the speaker's perspective on both cognitive (theory of mind) and affective (empathy-like) levels. In line with classic pragmatic theories, our results also indicate that currently popular "simulationist" accounts of language comprehension fail to explain how listeners understand the speaker's intended message.Additional information
http://cercor.oxfordjournals.org/content/early/2013/05/02/cercor.bht112/suppl/D… -
Cai, D., Fonteijn, H. M., Guadalupe, T., Zwiers, M., Wittfeld, K., Teumer, A., Hoogman, M., Arias Vásquez, A., Yang, Y., Buitelaar, J., Fernández, G., Brunner, H. G., Van Bokhoven, H., Franke, B., Hegenscheid, K., Homuth, G., Fisher, S. E., Grabe, H. J., Francks, C., & Hagoort, P. (2014). A genome wide search for quantitative trait loci affecting the cortical surface area and thickness of Heschl's gyrus. Genes, Brain and Behavior, 13, 675-685. doi:10.1111/gbb.12157.
Abstract
Heschl's gyrus (HG) is a core region of the auditory cortex whose morphology is highly variable across individuals. This variability has been linked to sound perception ability in both speech and music domains. Previous studies show that variations in morphological features of HG, such as cortical surface area and thickness, are heritable. To identify genetic variants that affect HG morphology, we conducted a genome-wide association scan (GWAS) meta-analysis in 3054 healthy individuals using HG surface area and thickness as quantitative traits. None of the single nucleotide polymorphisms (SNPs) showed association P values that would survive correction for multiple testing over the genome. The most significant association was found between right HG area and SNP rs72932726 close to gene DCBLD2 (3q12.1; P=2.77x10(-7)). This SNP was also associated with other regions involved in speech processing. The SNP rs333332 within gene KALRN (3q21.2; P=2.27x10(-6)) and rs143000161 near gene COBLL1 (2q24.3; P=2.40x10(-6)) were associated with the area and thickness of left HG, respectively. Both genes are involved in the development of the nervous system. The SNP rs7062395 close to the X-linked deafness gene POU3F4 was associated with right HG thickness (Xq21.1; P=2.38x10(-6)). This is the first molecular genetic analysis of variability in HG morphology -
Chu, M., & Hagoort, P. (2014). Synchronization of speech and gesture: Evidence for interaction in action. Journal of Experimental Psychology: General, 143(4), 1726-1741. doi:10.1037/a0036281.
Abstract
Language and action systems are highly interlinked. A critical piece of evidence is that speech and its accompanying gestures are tightly synchronized. Five experiments were conducted to test 2 hypotheses about the synchronization of speech and gesture. According to the interactive view, there is continuous information exchange between the gesture and speech systems, during both their planning and execution phases. According to the ballistic view, information exchange occurs only during the planning phases of gesture and speech, but the 2 systems become independent once their execution has been initiated. In all experiments, participants were required to point to and/or name a light that had just lit up. Virtual reality and motion tracking technologies were used to disrupt their gesture or speech execution. Participants delayed their speech onset when their gesture was disrupted. They did so even when their gesture was disrupted at its late phase and even when they received only the kinesthetic feedback of their gesture. Also, participants prolonged their gestures when their speech was disrupted. These findings support the interactive view and add new constraints on models of speech and gesture production -
Cristia, A., Seidl, A., Junge, C., Soderstrom, M., & Hagoort, P. (2014). Predicting individual variation in language from infant speech perception measures. Child development, 85(4), 1330-1345. doi:10.1111/cdev.12193.
Abstract
There are increasing reports that individual variation in behavioral and neurophysiological measures of infant speech processing predicts later language outcomes, and specifically concurrent or subsequent vocabulary size. If such findings are held up under scrutiny, they could both illuminate theoretical models of language development and contribute to the prediction of communicative disorders. A qualitative, systematic review of this emergent literature illustrated the variety of approaches that have been used and highlighted some conceptual problems regarding the measurements. A quantitative analysis of the same data established that the bivariate relation was significant, with correlations of similar strength to those found for well-established nonlinguistic predictors of language. Further exploration of infant speech perception predictors, particularly from a methodological perspective, is recommended. -
Dolscheid, S., Willems, R. M., Hagoort, P., & Casasanto, D. (2014). The relation of space and musical pitch in the brain. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (
Eds. ), Proceedings of the 36th Annual Meeting of the Cognitive Science Society (CogSci 2014) (pp. 421-426). Austin, Tx: Cognitive Science Society.Abstract
Numerous experiments show that space and musical pitch are
closely linked in people's minds. However, the exact nature of
space-pitch associations and their neuronal underpinnings are
not well understood. In an fMRI experiment we investigated
different types of spatial representations that may underlie
musical pitch. Participants judged stimuli that varied in
spatial height in both the visual and tactile modalities, as well
as auditory stimuli that varied in pitch height. In order to
distinguish between unimodal and multimodal spatial bases of
musical pitch, we examined whether pitch activations were
present in modality-specific (visual or tactile) versus
multimodal (visual and tactile) regions active during spatial
height processing. Judgments of musical pitch were found to
activate unimodal visual areas, suggesting that space-pitch
associations may involve modality-specific spatial
representations, supporting a key assumption of embodied
theories of metaphorical mental representation. -
Guadalupe, T., Willems, R. M., Zwiers, M., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Franke, B., Fisher, S. E., & Francks, C. (2014). Differences in cerebral cortical anatomy of left- and right-handers. Frontiers in Psychology, 5: 261. doi:10.3389/fpsyg.2014.00261.
Abstract
The left and right sides of the human brain are specialized for different kinds of information processing, and much of our cognition is lateralized to an extent towards one side or the other. Handedness is a reflection of nervous system lateralization. Roughly ten percent of people are mixed- or left-handed, and they show an elevated rate of reductions or reversals of some cerebral functional asymmetries compared to right-handers. Brain anatomical correlates of left-handedness have also been suggested. However, the relationships of left-handedness to brain structure and function remain far from clear. We carried out a comprehensive analysis of cortical surface area differences between 106 left-handed subjects and 1960 right-handed subjects, measured using an automated method of regional parcellation (FreeSurfer, Destrieux atlas). This is the largest study sample that has so far been used in relation to this issue. No individual cortical region showed an association with left-handedness that survived statistical correction for multiple testing, although there was a nominally significant association with the surface area of a previously implicated region: the left precentral sulcus. Identifying brain structural correlates of handedness may prove useful for genetic studies of cerebral asymmetries, as well as providing new avenues for the study of relations between handedness, cerebral lateralization and cognition. -
Guadalupe, T., Zwiers, M. P., Teumer, A., Wittfeld, K., Arias Vasquez, A., Hoogman, M., Hagoort, P., Fernández, G., Buitelaar, J., Hegenscheid, K., Völzke, H., Franke, B., Fisher, S. E., Grabe, H. J., & Francks, C. (2014). Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Human Brain Mapping, 35(7), 3277-3289. doi:10.1002/hbm.22401.
Abstract
Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P < 5 × 10-8). There was no enrichment of genetic association in genes involved in left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries -
Hagoort, P. (2014). Introduction to section on language and abstract thought. In M. S. Gazzaniga, & G. R. Mangun (
Eds. ), The cognitive neurosciences (5th ed., pp. 615-618). Cambridge, Mass: MIT Press. -
Hagoort, P., & Levinson, S. C. (2014). Neuropragmatics. In M. S. Gazzaniga, & G. R. Mangun (
Eds. ), The cognitive neurosciences (5th ed., pp. 667-674). Cambridge, Mass: MIT Press. -
Hagoort, P. (2014). Nodes and networks in the neural architecture for language: Broca's region and beyond. Current Opinion in Neurobiology, 28, 136-141. doi:10.1016/j.conb.2014.07.013.
Abstract
Current views on the neurobiological underpinnings of language are discussed that deviate in a number of ways from the classical Wernicke–Lichtheim–Geschwind model. More areas than Broca's and Wernicke's region are involved in language. Moreover, a division along the axis of language production and language comprehension does not seem to be warranted. Instead, for central aspects of language processing neural infrastructure is shared between production and comprehension. Three different accounts of the role of Broca's area in language are discussed. Arguments are presented in favor of a dynamic network view, in which the functionality of a region is co-determined by the network of regions in which it is embedded at particular moments in time. Finally, core regions of language processing need to interact with other networks (e.g. the attentional networks and the ToM network) to establish full functionality of language and communication. -
Hagoort, P., & Indefrey, P. (2014). The neurobiology of language beyond single words. Annual Review of Neuroscience, 37, 347-362. doi:10.1146/annurev-neuro-071013-013847.
Abstract
A hallmark of human language is that we combine lexical building blocks retrieved from memory in endless new ways. This combinatorial aspect of language is referred to as unification. Here we focus on the neurobiological infrastructure for syntactic and semantic unification. Unification is characterized by a high-speed temporal profile including both prediction and integration of retrieved lexical elements. A meta-analysis of numerous neuroimaging studies reveals a clear dorsal/ventral gradient in both left inferior frontal cortex and left posterior temporal cortex, with dorsal foci for syntactic processing and ventral foci for semantic processing. In addition to core areas for unification, further networks need to be recruited to realize language-driven communication to its full extent. One example is the theory of mind network, which allows listeners and readers to infer the intended message (speaker meaning) from the coded meaning of the linguistic utterance. This indicates that sensorimotor simulation cannot handle all of language processing.Additional information
http://www.annualreviews.org/doi/suppl/10.1146/annurev-neuro-071013-013847 -
Heyselaar, E., Hagoort, P., & Segaert, K. (2014). In dialogue with an avatar, syntax production is identical compared to dialogue with a human partner. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (
Eds. ), Proceedings of the 36th Annual Meeting of the Cognitive Science Society (CogSci 2014) (pp. 2351-2356). Austin, Tx: Cognitive Science Society.Abstract
The use of virtual reality (VR) as a methodological tool is
becoming increasingly popular in behavioural research due
to its seemingly limitless possibilities. This new method has
not been used frequently in the field of psycholinguistics,
however, possibly due to the assumption that humancomputer
interaction does not accurately reflect human-human
interaction. In the current study we compare participants’
language behaviour in a syntactic priming task with human
versus avatar partners. Our study shows comparable priming
effects between human and avatar partners (Human: 12.3%;
Avatar: 12.6% for passive sentences) suggesting that VR is a
valid platform for conducting language research and studying
dialogue interactions. -
Holler, J., Schubotz, L., Kelly, S., Hagoort, P., Schuetze, M., & Ozyurek, A. (2014). Social eye gaze modulates processing of speech and co-speech gesture. Cognition, 133, 692-697. doi:10.1016/j.cognition.2014.08.008.
Abstract
In human face-to-face communication, language comprehension is a multi-modal, situated activity. However, little is known about how we combine information from different modalities during comprehension, and how perceived communicative intentions, often signaled through visual signals, influence this process. We explored this question by simulating a multi-party communication context in which a speaker alternated her gaze between two recipients. Participants viewed speech-only or speech + gesture object-related messages when being addressed (direct gaze) or unaddressed (gaze averted to other participant). They were then asked to choose which of two object images matched the speaker’s preceding message. Unaddressed recipients responded significantly more slowly than addressees for speech-only utterances. However, perceiving the same speech accompanied by gestures sped unaddressed recipients up to a level identical to that of addressees. That is, when unaddressed recipients’ speech processing suffers, gestures can enhance the comprehension of a speaker’s message. We discuss our findings with respect to two hypotheses attempting to account for how social eye gaze may modulate multi-modal language comprehension. -
Junge, C., Cutler, A., & Hagoort, P. (2014). Successful word recognition by 10-month-olds given continuous speech both at initial exposure and test. Infancy, 19(2), 179-193. doi:10.1111/infa.12040.
Abstract
Most words that infants hear occur within fluent speech. To compile a vocabulary, infants therefore need to segment words from speech contexts. This study is the first to investigate whether infants (here: 10-month-olds) can recognize words when both initial exposure and test presentation are in continuous speech. Electrophysiological evidence attests that this indeed occurs: An increased extended negativity (word recognition effect) appears for familiarized target words relative to control words. This response proved constant at the individual level: Only infants who showed this negativity at test had shown such a response, within six repetitions after first occurrence, during familiarization. -
Levy, J., Hagoort, P., & Démonet, J.-F. (2014). A neuronal gamma oscillatory signature during morphological unification in the left occipitotemporal junction. Human Brain Mapping, 35, 5847-5860. doi:10.1002/hbm.22589.
Abstract
Morphology is the aspect of language concerned with the internal structure of words. In the past decades, a large body of masked priming (behavioral and neuroimaging) data has suggested that the visual word recognition system automatically decomposes any morphologically complex word into a stem and its constituent morphemes. Yet the reliance of morphology on other reading processes (e.g., orthography and semantics), as well as its underlying neuronal mechanisms are yet to be determined. In the current magnetoencephalography study, we addressed morphology from the perspective of the unification framework, that is, by applying the Hold/Release paradigm, morphological unification was simulated via the assembly of internal morphemic units into a whole word. Trials representing real words were divided into words with a transparent (true) or a nontransparent (pseudo) morphological relationship. Morphological unification of truly suffixed words was faster and more accurate and additionally enhanced induced oscillations in the narrow gamma band (60–85 Hz, 260–440 ms) in the left posterior occipitotemporal junction. This neural signature could not be explained by a mere automatic lexical processing (i.e., stem perception), but more likely it related to a semantic access step during the morphological unification process. By demonstrating the validity of unification at the morphological level, this study contributes to the vast empirical evidence on unification across other language processes. Furthermore, we point out that morphological unification relies on the retrieval of lexical semantic associations via induced gamma band oscillations in a cerebral hub region for visual word form processing. -
Schoot, L., Menenti, L., Hagoort, P., & Segaert, K. (2014). A little more conversation - The influence of communicative context on syntactic priming in brain and behavior. Frontiers in Psychology, 5: 208. doi:10.3389/fpsyg.2014.00208.
Abstract
We report on an fMRI syntactic priming experiment in which we measure brain activity for participants who communicate with another participant outside the scanner. We investigated whether syntactic processing during overt language production and comprehension is influenced by having a (shared) goal to communicate. Although theory suggests this is true, the nature of this influence remains unclear. Two hypotheses are tested: i. syntactic priming effects (fMRI and RT) are stronger for participants in the communicative context than for participants doing the same experiment in a non-communicative context, and ii. syntactic priming magnitude (RT) is correlated with the syntactic priming magnitude of the speaker’s communicative partner. Results showed that across conditions, participants were faster to produce sentences with repeated syntax, relative to novel syntax. This behavioral result converged with the fMRI data: we found repetition suppression effects in the left insula extending into left inferior frontal gyrus (BA 47/45), left middle temporal gyrus (BA 21), left inferior parietal cortex (BA 40), left precentral gyrus (BA 6), bilateral precuneus (BA 7), bilateral supplementary motor cortex (BA 32/8) and right insula (BA 47). We did not find support for the first hypothesis: having a communicative intention does not increase the magnitude of syntactic priming effects (either in the brain or in behavior) per se. We did find support for the second hypothesis: if speaker A is strongly/weakly primed by speaker B, then speaker B is primed by speaker A to a similar extent. We conclude that syntactic processing is influenced by being in a communicative context, and that the nature of this influence is bi-directional: speakers are influenced by each other. -
Segaert, K., Weber, K., Cladder-Micus, M., & Hagoort, P. (2014). The influence of verb-bound syntactic preferences on the processing of syntactic structures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(5), 1448-1460. doi:10.1037/a0036796.
Abstract
Speakers sometimes repeat syntactic structures across sentences, a phenomenon called syntactic priming. We investigated the influence of verb-bound syntactic preferences on syntactic priming effects in response choices and response latencies for German ditransitive sentences. In the response choices we found inverse preference effects: There were stronger syntactic priming effects for primes in the less preferred structure, given the syntactic preference of the prime verb. In the response latencies we found positive preference effects: There were stronger syntactic priming effects for primes in the more preferred structure, given the syntactic preference of the prime verb. These findings provide further support for the idea that syntactic processing is lexically guided. -
Simanova, I., Hagoort, P., Oostenveld, R., & Van Gerven, M. A. J. (2014). Modality-independent decoding of semantic information from the human brain. Cerebral Cortex, 24, 426-434. doi:10.1093/cercor/bhs324.
Abstract
An ability to decode semantic information from fMRI spatial patterns has been demonstrated in previous studies mostly for 1 specific input modality. In this study, we aimed to decode semantic category independent of the modality in which an object was presented. Using a searchlight method, we were able to predict the stimulus category from the data while participants performed a semantic categorization task with 4 stimulus modalities (spoken and written names, photographs, and natural sounds). Significant classification performance was achieved in all 4 modalities. Modality-independent decoding was implemented by training and testing the searchlight method across modalities. This allowed the localization of those brain regions, which correctly discriminated between the categories, independent of stimulus modality. The analysis revealed large clusters of voxels in the left inferior temporal cortex and in frontal regions. These voxels also allowed category discrimination in a free recall session where subjects recalled the objects in the absence of external stimuli. The results show that semantic information can be decoded from the fMRI signal independently of the input modality and have clear implications for understanding the functional mechanisms of semantic memory.Additional information
http://cercor.oxfordjournals.org/content/early/2012/10/11/cercor.bhs324/suppl/D… -
Stolk, A., Noordzij, M. L., Verhagen, L., Volman, I., Schoffelen, J.-M., Oostenveld, R., Hagoort, P., & Toni, I. (2014). Cerebral coherence between communicators marks the emergence of meaning. Proceedings of the National Academy of Sciences of the United States of America, 111, 18183-18188. doi:10.1073/pnas.1414886111.
Abstract
How can we understand each other during communicative interactions? An influential suggestion holds that communicators are primed by each other’s behaviors, with associative mechanisms automatically coordinating the production of communicative signals and the comprehension of their meanings. An alternative suggestion posits that mutual understanding requires shared conceptualizations of a signal’s use, i.e., “conceptual pacts” that are abstracted away from specific experiences. Both accounts predict coherent neural dynamics across communicators, aligned either to the occurrence of a signal or to the dynamics of conceptual pacts. Using coherence spectral-density analysis of cerebral activity simultaneously measured in pairs of communicators, this study shows that establishing mutual understanding of novel signals synchronizes cerebral dynamics across communicators’ right temporal lobes. This interpersonal cerebral coherence occurred only within pairs with a shared communicative history, and at temporal scales independent from signals’ occurrences. These findings favor the notion that meaning emerges from shared conceptualizations of a signal’s use.Additional information
http://www.pnas.org/content/suppl/2014/12/04/1414886111.DCSupplemental -
Stolk, A., Noordzij, M. L., Volman, I., Verhagen, L., Overeem, S., van Elswijk, G., Bloem, B., Hagoort, P., & Toni, I. (2014). Understanding communicative actions: A repetitive TMS study. Cortex, 51, 25-34. doi:10.1016/j.cortex.2013.10.005.
Abstract
Despite the ambiguity inherent in human communication, people are remarkably efficient in establishing mutual understanding. Studying how people communicate in novel settings provides a window into the mechanisms supporting the human competence to rapidly generate and understand novel shared symbols, a fundamental property of human communication. Previous work indicates that the right posterior superior temporal sulcus (pSTS) is involved when people understand the intended meaning of novel communicative actions. Here, we set out to test whether normal functioning of this cerebral structure is required for understanding novel communicative actions using inhibitory low-frequency repetitive transcranial magnetic stimulation (rTMS). A factorial experimental design contrasted two tightly matched stimulation sites (right pSTS vs. left MT+, i.e. a contiguous homotopic task-relevant region) and tasks (a communicative task vs. a visual tracking task that used the same sequences of stimuli). Overall task performance was not affected by rTMS, whereas changes in task performance over time were disrupted according to TMS site and task combinations. Namely, rTMS over pSTS led to a diminished ability to improve action understanding on the basis of recent communicative history, while rTMS over MT+ perturbed improvement in visual tracking over trials. These findings qualify the contributions of the right pSTS to human communicative abilities, showing that this region might be necessary for incorporating previous knowledge, accumulated during interactions with a communicative partner, to constrain the inferential process that leads to action understanding. -
Takashima, A., Wagensveld, B., Van Turennout, M., Zwitserlood, P., Hagoort, P., & Verhoeven, L. (2014). Training-induced neural plasticity in visual-word decoding and the role of syllables. Neuropsychologia, 61, 299-314. doi:10.1016/j.neuropsychologia.2014.06.017.
Abstract
To investigate the neural underpinnings of word decoding, and how it changes as a function of repeated exposure, we trained Dutch participants repeatedly over the course of a month of training to articulate a set of novel disyllabic input strings written in Greek script to avoid the use of familiar orthographic representations. The syllables in the input were phonotactically legal combinations but non-existent in the Dutch language, allowing us to assess their role in novel word decoding. Not only trained disyllabic pseudowords were tested but also pseudowords with recombined patterns of syllables to uncover the emergence of syllabic representations. We showed that with extensive training, articulation became faster and more accurate for the trained pseudowords. On the neural level, the initial stage of decoding was reflected by increased activity in visual attention areas of occipito-temporal and occipito-parietal cortices, and in motor coordination areas of the precentral gyrus and the inferior frontal gyrus. After one month of training, memory representations for holistic information (whole word unit) were established in areas encompassing the angular gyrus, the precuneus and the middle temporal gyrus. Syllabic representations also emerged through repeated training of disyllabic pseudowords, such that reading recombined syllables of the trained pseudowords showed similar brain activation to trained pseudowords and were articulated faster than novel combinations of letter strings used in the trained pseudowords. -
Van Leeuwen, T. M., Petersson, K. M., Langner, O., Rijpkema, M., & Hagoort, P. (2014). Color specificity in the human V4 complex: An fMRI repetition suppression study. In T. D. Papageorgiou, G. I. Cristopoulous, & S. M. Smirnakis (
Eds. ), Advanced Brain Neuroimaging Topics in Health and Disease - Methods and Applications (pp. 275-295). Rijeka, Croatia: Intech. doi:10.5772/58278. -
Van Leeuwen, T. M., Lamers, M. J. A., Petersson, K. M., Gussenhoven, C., Poser, B., & Hagoort, P. (2014). Phonological markers of information structure: An fMRI study. Neuropsychologia, 58(1), 64-74. doi:10.1016/j.neuropsychologia.2014.03.017.
Abstract
In this fMRI study we investigate the neural correlates of information structure integration during sentence comprehension in Dutch. We looked into how prosodic cues (pitch accents) that signal the information status of constituents to the listener (new information) are combined with other types of information during the unification process. The difficulty of unifying the prosodic cues into overall sentence meaning was manipulated by constructing sentences in which the pitch accent did (focus-accent agreement), and sentences in which the pitch accent did not (focus-accent disagreement) match the expectations for focus constituents of the sentence. In case of a mismatch, the load on unification processes increases. Our results show two anatomically distinct effects of focus-accent disagreement, one located in the posterior left inferior frontal gyrus (LIFG, BA6/44), and one in the more anterior-ventral LIFG (BA 47/45). Our results confirm that information structure is taken into account during unification, and imply an important role for the LIFG in unification processes, in line with previous fMRI studies.Additional information
mmc1.doc -
Acheson, D. J., & Hagoort, P. (2013). Stimulating the brain's language network: Syntactic ambiguity resolution after TMS to the IFG and MTG. Journal of Cognitive Neuroscience, 25(10), 1664-1677. doi:10.1162/jocn_a_00430.
Abstract
The posterior middle temporal gyrus (MTG) and inferior frontal gyrus (IFG) are two critical nodes of the brain's language network. Previous neuroimaging evidence has supported a dissociation in language comprehension in which parts of the MTG are involved in the retrieval of lexical syntactic information and the IFG is involved in unification operations that maintain, select, and integrate multiple sources of information over time. In the present investigation, we tested for causal evidence of this dissociation by modulating activity in IFG and MTG using an offline TMS procedure: continuous theta-burst stimulation. Lexical–syntactic retrieval was manipulated by using sentences with and without a temporarily word-class (noun/verb) ambiguity (e.g., run). In one group of participants, TMS was applied to the IFG and MTG, and in a control group, no TMS was applied. Eye movements were recorded and quantified at two critical sentence regions: a temporarily ambiguous region and a disambiguating region. Results show that stimulation of the IFG led to a modulation of the ambiguity effect (ambiguous–unambiguous) at the disambiguating sentence region in three measures: first fixation durations, total reading times, and regressive eye movements into the region. Both IFG and MTG stimulation modulated the ambiguity effect for total reading times in the temporarily ambiguous sentence region relative to a control group. The current results demonstrate that an offline repetitive TMS protocol can have influences at a different point in time during online processing and provide causal evidence for IFG involvement in unification operations during sentence comprehension. -
Hagoort, P. (2013). MUC (Memory, Unification, Control) and beyond. Frontiers in Psychology, 4: 416. doi:10.3389/fpsyg.2013.00416.
Abstract
A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension of the model beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content. It is shown that this requires the dynamic interaction between multiple brain regions. -
Hagoort, P., & Poeppel, D. (2013). The infrastructure of the language-ready brain. In M. A. Arbib (
Ed. ), Language, music, and the brain: A mysterious relationship (pp. 233-255). Cambridge, MA: MIT Press.Abstract
This chapter sketches in very general terms the cognitive architecture of both language comprehension and production, as well as the neurobiological infrastructure that makes the human brain ready for language. Focus is on spoken language, since that compares most directly to processing music. It is worth bearing in mind that humans can also interface with language as a cognitive system using sign and text (visual) as well as Braille (tactile); that is to say, the system can connect with input/output processes in any sensory modality. Language processing consists of a complex and nested set of subroutines to get from sound to meaning (in comprehension) or meaning to sound (in production), with remarkable speed and accuracy. The fi rst section outlines a selection of the major constituent operations, from fractionating the input into manageable units to combining and unifying information in the construction of meaning. The next section addresses the neurobiological infrastructure hypothesized to form the basis for language processing. Principal insights are summarized by building on the notion of “brain networks” for speech–sound processing, syntactic processing, and the construction of meaning, bearing in mind that such a neat three-way subdivision overlooks important overlap and shared mechanisms in the neural architecture subserving language processing. Finally, in keeping with the spirit of the volume, some possible relations are highlighted between language and music that arise from the infrastructure developed here. Our characterization of language and its neurobiological foundations is necessarily selective and brief. Our aim is to identify for the reader critical questions that require an answer to have a plausible cognitive neuroscience of language processing. -
Hagoort, P., & Meyer, A. S. (2013). What belongs together goes together: the speaker-hearer perspective. A commentary on MacDonald's PDC account. Frontiers in Psychology, 4: 228. doi:10.3389/fpsyg.2013.00228.
Abstract
First paragraph:
MacDonald (2013) proposes that distributional properties of language and processing biases in language comprehension can to a large extent be attributed to consequences of the language production process. In essence, the account is derived from the principle of least effort that was formulated by Zipf, among others (Zipf, 1949; Levelt, 2013). However, in Zipf's view the outcome of the least effort principle was a compromise between least effort for the speaker and least effort for the listener, whereas MacDonald puts most of the burden on the production process. -
Holler, J., Schubotz, L., Kelly, S., Schuetze, M., Hagoort, P., & Ozyurek, A. (2013). Here's not looking at you, kid! Unaddressed recipients benefit from co-speech gestures when speech processing suffers. In M. Knauff, M. Pauen, I. Sebanz, & I. Wachsmuth (
Eds. ), Proceedings of the 35th Annual Meeting of the Cognitive Science Society (CogSci 2013) (pp. 2560-2565). Austin, TX: Cognitive Science Society. Retrieved from http://mindmodeling.org/cogsci2013/papers/0463/index.html.Abstract
In human face-to-face communication, language comprehension is a multi-modal, situated activity. However, little is known about how we combine information from these different modalities, and how perceived communicative intentions, often signaled through visual signals, such as eye
gaze, may influence this processing. We address this question by simulating a triadic communication context in which a
speaker alternated her gaze between two different recipients. Participants thus viewed speech-only or speech+gesture
object-related utterances when being addressed (direct gaze) or unaddressed (averted gaze). Two object images followed
each message and participants’ task was to choose the object that matched the message. Unaddressed recipients responded significantly slower than addressees for speech-only
utterances. However, perceiving the same speech accompanied by gestures sped them up to a level identical to
that of addressees. That is, when speech processing suffers due to not being addressed, gesture processing remains intact and enhances the comprehension of a speaker’s message -
Kooijman, V., Junge, C., Johnson, E. K., Hagoort, P., & Cutler, A. (2013). Predictive brain signals of linguistic development. Frontiers in Psychology, 4: 25. doi:10.3389/fpsyg.2013.00025.
Abstract
The ability to extract word forms from continuous speech is a prerequisite for constructing a vocabulary and emerges in the first year of life. Electrophysiological (ERP) studies of speech segmentation by 9- to 12-month-old listeners in several languages have found a left-localized negativity linked to word onset as a marker of word detection. We report an ERP study showing significant evidence of speech segmentation in Dutch-learning 7-month-olds. In contrast to the left-localized negative effect reported with older infants, the observed overall mean effect had a positive polarity. Inspection of individual results revealed two participant sub-groups: a majority showing a positive-going response, and a minority showing the left negativity observed in older age groups. We retested participants at age three, on vocabulary comprehension and word and sentence production. On every test, children who at 7 months had shown the negativity associated with segmentation of words from speech outperformed those who had produced positive-going brain responses to the same input. The earlier that infants show the left-localized brain responses typically indicating detection of words in speech, the better their early childhood language skills. -
Kristensen, L. B., Wang, L., Petersson, K. M., & Hagoort, P. (2013). The interface between language and attention: Prosodic focus marking recruits a general attention network in spoken language comprehension. Cerebral Cortex, 23, 1836-1848. doi:10.1093/cercor/bhs164.
Abstract
In spoken language, pitch accent can mark certain information as focus, whereby more attentional resources are allocated to the focused information. Using functional magnetic resonance imaging, this study examined whether pitch accent, used for marking focus, recruited general attention networks during sentence comprehension. In a language task, we independently manipulated the prosody and semantic/pragmatic congruence of sentences. We found that semantic/pragmatic processing affected bilateral inferior and middle frontal gyrus. The prosody manipulation showed bilateral involvement of the superior/inferior parietal cortex, superior and middle temporal cortex, as well as inferior, middle, and posterior parts of the frontal cortex. We compared these regions with attention networks localized in an auditory spatial attention task. Both tasks activated bilateral superior/inferior parietal cortex, superior temporal cortex, and left precentral cortex. Furthermore, an interaction between prosody and congruence was observed in bilateral inferior parietal regions: for incongruent sentences, but not for congruent ones, there was a larger activation if the incongruent word carried a pitch accent, than if it did not. The common activations between the language task and the spatial attention task demonstrate that pitch accent activates a domain general attention network, which is sensitive to semantic/pragmatic aspects of language. Therefore, attention and language comprehension are highly interactive.Additional information
Kirstensen_Cer_Cor_Suppl_Mat.doc -
Meyer, A. S., & Hagoort, P. (2013). What does it mean to predict one's own utterances? [Commentary on Pickering & Garrod]. Behavioral and Brain Sciences, 36, 367-368. doi:10.1017/S0140525X12002786.
Abstract
Many authors have recently highlighted the importance of prediction for language comprehension. Pickering & Garrod (P&G) are the first to propose a central role for prediction in language production. This is an intriguing idea, but it is not clear what it means for speakers to predict their own utterances, and how prediction during production can be empirically distinguished from production proper. -
Peeters, D., Chu, M., Holler, J., Ozyurek, A., & Hagoort, P. (2013). Getting to the point: The influence of communicative intent on the kinematics of pointing gestures. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (
Eds. ), Proceedings of the 35th Annual Meeting of the Cognitive Science Society (CogSci 2013) (pp. 1127-1132). Austin, TX: Cognitive Science Society.Abstract
In everyday communication, people not only use speech but
also hand gestures to convey information. One intriguing
question in gesture research has been why gestures take the
specific form they do. Previous research has identified the
speaker-gesturer’s communicative intent as one factor
shaping the form of iconic gestures. Here we investigate
whether communicative intent also shapes the form of
pointing gestures. In an experimental setting, twenty-four
participants produced pointing gestures identifying a referent
for an addressee. The communicative intent of the speakergesturer
was manipulated by varying the informativeness of
the pointing gesture. A second independent variable was the
presence or absence of concurrent speech. As a function of their communicative intent and irrespective of the presence of speech, participants varied the durations of the stroke and the post-stroke hold-phase of their gesture. These findings add to our understanding of how the communicative context influences the form that a gesture takes.Additional information
http://mindmodeling.org/cogsci2013/papers/0219/index.html -
Segaert, K., Kempen, G., Petersson, K. M., & Hagoort, P. (2013). Syntactic priming and the lexical boost effect during sentence production and sentence comprehension: An fMRI study. Brain and Language, 124, 174-183. doi:10.1016/j.bandl.2012.12.003.
Abstract
Behavioral syntactic priming effects during sentence comprehension are typically observed only if both the syntactic structure and lexical head are repeated. In contrast, during production syntactic priming occurs with structure repetition alone, but the effect is boosted by repetition of the lexical head. We used fMRI to investigate the neuronal correlates of syntactic priming and lexical boost effects during sentence production and comprehension. The critical measure was the magnitude of fMRI adaptation to repetition of sentences in active or passive voice, with or without verb repetition. In conditions with repeated verbs, we observed adaptation to structure repetition in the left IFG and MTG, for active and passive voice. However, in the absence of repeated verbs, adaptation occurred only for passive sentences. None of the fMRI adaptation effects yielded differential effects for production versus comprehension, suggesting that sentence comprehension and production are subserved by the same neuronal infrastructure for syntactic processing.Additional information
Segaert_Supplementary_data_2013.docx -
Segaert, K., Weber, K., De Lange, F., Petersson, K. M., & Hagoort, P. (2013). The suppression of repetition enhancement: A review of fMRI studies. Neuropsychologia, 51, 59-66. doi:10.1016/j.neuropsychologia.2012.11.006.
Abstract
Repetition suppression in fMRI studies is generally thought to underlie behavioural facilitation effects (i.e., priming) and it is often used to identify the neuronal representations associated with a stimulus. However, this pays little heed to the large number of repetition enhancement effects observed under similar conditions. In this review, we identify several cognitive variables biasing repetition effects in the BOLD response towards enhancement instead of suppression. These variables are stimulus recognition, learning, attention, expectation and explicit memory. We also evaluate which models can account for these repetition effects and come to the conclusion that there is no one single model that is able to embrace all repetition enhancement effects. Accumulation, novel network formation as well as predictive coding models can all explain subsets of repetition enhancement effects. -
Stolk, A., Verhagen, L., Schoffelen, J.-M., Oostenveld, R., Blokpoel, M., Hagoort, P., van Rooij, I., & Tonia, I. (2013). Neural mechanisms of communicative innovation. Proceedings of the National Academy of Sciences of the United States of America, 110(36), 14574-14579. doi:10.1073/pnas.1303170110.
Abstract
Human referential communication is often thought as coding-decoding a set of symbols, neglecting that establishing shared meanings requires a computational mechanism powerful enough to mutually negotiate them. Sharing the meaning of a novel symbol might rely on similar conceptual inferences across communicators or on statistical similarities in their sensorimotor behaviors. Using magnetoencephalography, we assess spectral, temporal, and spatial characteristics of neural activity evoked when people generate and understand novel shared symbols during live communicative interactions. Solving those communicative problems induced comparable changes in the spectral profile of neural activity of both communicators and addressees. This shared neuronal up-regulation was spatially localized to the right temporal lobe and the ventromedial prefrontal cortex and emerged already before the occurrence of a specific communicative problem. Communicative innovation relies on neuronal computations that are shared across generating and understanding novel shared symbols, operating over temporal scales independent from transient sensorimotor behavior.Additional information
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1303170110/-/DCSupplemental -
Thompson-Schill, S., Hagoort, P., Dominey, P. F., Honing, H., Koelsch, S., Ladd, D. R., Lerdahl, F., Levinson, S. C., & Steedman, M. (2013). Multiple levels of structure in language and music. In M. A. Arbib (
Ed. ), Language, music, and the brain: A mysterious relationship (pp. 289-303). Cambridge, MA: MIT Press.Abstract
A forum devoted to the relationship between music and language begins with an implicit assumption: There is at least one common principle that is central to all human musical systems and all languages, but that is not characteristic of (most) other domains. Why else should these two categories be paired together for analysis? We propose that one candidate for a common principle is their structure. In this chapter, we explore the nature of that structure—and its consequences for psychological and neurological processing mechanisms—within and across these two domains. -
Van Leeuwen, T. M., Hagoort, P., & Händel, B. F. (2013). Real color captures attention and overrides spatial cues in grapheme-color synesthetes but not in controls. Neuropsychologia, 51(10), 1802-1813. doi:10.1016/j.neuropsychologia.2013.06.024.
Abstract
Grapheme-color synesthetes perceive color when reading letters or digits. We investigated oscillatory brain signals of synesthetes vs. controls using magnetoencephalography. Brain oscillations specifically in the alpha band (∼10 Hz) have two interesting features: alpha has been linked to inhibitory processes and can act as a marker for attention. The possible role of reduced inhibition as an underlying cause of synesthesia, as well as the precise role of attention in synesthesia is widely discussed. To assess alpha power effects due to synesthesia, synesthetes as well as matched controls viewed synesthesia-inducing graphemes, colored control graphemes, and non-colored control graphemes while brain activity was recorded. Subjects had to report a color change at the end of each trial which allowed us to assess the strength of synesthesia in each synesthete. Since color (synesthetic or real) might allocate attention we also included an attentional cue in our paradigm which could direct covert attention. In controls the attentional cue always caused a lateralization of alpha power with a contralateral decrease and ipsilateral alpha increase over occipital sensors. In synesthetes, however, the influence of the cue was overruled by color: independent of the attentional cue, alpha power decreased contralateral to the color (synesthetic or real). This indicates that in synesthetes color guides attention. This was confirmed by reaction time effects due to color, i.e. faster RTs for the color side independent of the cue. Finally, the stronger the observed color dependent alpha lateralization, the stronger was the manifestation of synesthesia as measured by congruency effects of synesthetic colors on RTs. Behavioral and imaging results indicate that color induces a location-specific, automatic shift of attention towards color in synesthetes but not in controls. We hypothesize that this mechanism can facilitate coupling of grapheme and color during the development of synesthesia. -
Wagensveld, B., Van Alphen, P. M., Segers, E., Hagoort, P., & Verhoeven, L. (2013). The neural correlates of rhyme awareness in preliterate and literate children. Clinical Neurophysiology, 124, 1336-1345. doi:10.1016/j.clinph.2013.01.022.
Abstract
Objective Most rhyme awareness assessments do not encompass measures of the global similarity effect (i.e., children who are able to perform simple rhyme judgments get confused when presented with globally similar non-rhyming pairs). The present study examines the neural nature of this effect by studying the N450 rhyme effect. Methods Behavioral and electrophysiological responses of Dutch pre-literate kindergartners and literate second graders were recorded while they made rhyme judgments of word pairs in three conditions; phonologically rhyming (e.g., wijn-pijn), overlapping non-rhyming (e.g., pen-pijn) and unrelated non-rhyming pairs (e.g., boom-pijn). Results Behaviorally, both groups had difficulty judging overlapping but not rhyming and unrelated pairs. The neural data of second graders showed overlapping pairs were processed in a similar fashion as unrelated pairs; both showed a more negative deflection of the N450 component than rhyming items. Kindergartners did not show a typical N450 rhyme effect. However, some other interesting ERP differences were observed, indicating preliterates are sensitive to rhyme at a certain level. Significance Rhyme judgments of globally similar items rely on the same process as rhyme judgments of rhyming and unrelated items. Therefore, incorporating a globally similar condition in rhyme assessments may lead to a more in-depth measure of early phonological awareness skills. Highlights Behavioral and electrophysiological responses were recorded while (pre)literate children made rhyme judgments of rhyming, overlapping and unrelated words. Behaviorally both groups had difficulty judging overlapping pairs as non-rhyming while overlapping and unrelated neural patterns were similar in literates. Preliterates show a different pattern indicating a developing phonological system. -
Wang, L., Bastiaansen, M. C. M., Yang, Y., & Hagoort, P. (2013). ERP evidence on the interaction between information structure and emotional salience of words. Cognitive, Affective and Behavioral Neuroscience, 13, 297-310. doi:10.3758/s13415-012-0146-2.
Abstract
Both emotional words and words focused by information structure can capture attention. This study examined the interplay between emotional salience and information structure in modulating attentional resources in the service of integrating emotional words into sentence context. Event-related potentials (ERPs) to affectively negative, neutral, and positive words, which were either focused or nonfocused in question–answer pairs, were evaluated during sentence comprehension. The results revealed an early negative effect (90–200 ms), a P2 effect, as well as an effect in the N400 time window, for both emotional salience and information structure. Moreover, an interaction between emotional salience and information structure occurred within the N400 time window over right posterior electrodes, showing that information structure influences the semantic integration only for neutral words, but not for emotional words. This might reflect the fact that the linguistic salience of emotional words can override the effect of information structure on the integration of words into context. The interaction provides evidence for attention–emotion interactions at a later stage of processing. In addition, the absence of interaction in the early time window suggests that the processing of emotional information is highly automatic and independent of context. The results suggest independent attention capture systems of emotional salience and information structure at the early stage but an interaction between them at a later stage, during the semantic integration of words. -
Wang, L., Zhu, Z., Bastiaansen, M. C. M., Hagoort, P., & Yang, Y. (2013). Recognizing the emotional valence of names: An ERP study. Brain and Language, 125, 118-127. doi:10.1016/j.bandl.2013.01.006.
Abstract
Unlike common nouns, person names refer to unique entities and generally have a referring function. We used event-related potentials to investigate the time course of identifying the emotional meaning of nouns and names. The emotional valence of names and nouns were manipulated separately. The results show early N1 effects in response to emotional valence only for nouns. This might reflect automatic attention directed towards emotional stimuli. The absence of such an effect for names supports the notion that the emotional meaning carried by names is accessed after word recognition and person identification. In addition, both names with negative valence and emotional nouns elicited late positive effects, which have been associated with evaluation of emotional significance. This positive effect started earlier for nouns than for names, but with similar durations. Our results suggest that distinct neural systems are involved in the retrieval of names’ and nouns’ emotional meaning. -
Acheson, D. J., Ganushchak, L. Y., Christoffels, I. K., & Hagoort, P. (2012). Conflict monitoring in speech production: Physiological evidence from bilingual picture naming. Brain and Language, 123, 131 -136. doi:10.1016/j.bandl.2012.08.008.
Abstract
Self-monitoring in production is critical to correct performance, and recent accounts suggest that such monitoring may occur via the detection of response conflict. The error-related negativity (ERN) is a response-locked event-related potential (ERP) that is sensitive to response conflict. The present study examines whether response conflict is detected in production by exploring a situation where multiple outputs are activated: the bilingual naming of form-related equivalents (i.e. cognates). ERPs were recorded while German-Dutch bilinguals named pictures in their first and second languages. Although cognates were named faster than non-cognates, response conflict was evident in the form of a larger ERN-like response for cognates and adaptation effects on naming, as the magnitude of cognate facilitation was smaller following the naming of cognates. Given that signals of response conflict are present during correct naming, the present results suggest that such conflict may serve as a reliable signal for monitoring in speech production. -
Adank, P., Noordzij, M. L., & Hagoort, P. (2012). The role of planum temporale in processing accent variation in spoken language comprehension. Human Brain Mapping, 33, 360-372. doi:10.1002/hbm.21218.
Abstract
A repetition-suppression functional magnetic resonance imaging paradigm was used to explore the neuroanatomical substrates of processing two types of acoustic variation—speaker and accent—during spoken sentence comprehension. Recordings were made for two speakers and two accents: Standard Dutch and a novel accent of Dutch. Each speaker produced sentences in both accents. Participants listened to two sentences presented in quick succession while their haemodynamic responses were recorded in an MR scanner. The first sentence was spoken in Standard Dutch; the second was spoken by the same or a different speaker and produced in Standard Dutch or in the artificial accent. This design made it possible to identify neural responses to a switch in speaker and accent independently. A switch in accent was associated with activations in predominantly left-lateralized areas including posterior temporal regions, including superior temporal gyrus, planum temporale (PT), and supramarginal gyrus, as well as in frontal regions, including left pars opercularis of the inferior frontal gyrus (IFG). A switch in speaker recruited a predominantly right-lateralized network, including middle frontal gyrus and prenuneus. It is concluded that posterior temporal areas, including PT, and frontal areas, including IFG, are involved in processing accent variation in spoken sentence comprehension -
Adank, P., Davis, M. H., & Hagoort, P. (2012). Neural dissociation in processing noise and accent in spoken language comprehension. Neuropsychologia, 50, 77-84. doi:10.1016/j.neuropsychologia.2011.10.024.
Abstract
We investigated how two distortions of the speech signal–added background noise and speech in an unfamiliar accent - affect comprehension of speech using functional Magnetic Resonance Imaging (fMRI). Listeners performed a speeded sentence verification task for speech in quiet in Standard Dutch, in Standard Dutch with added background noise, and for speech in an unfamiliar accent of Dutch. The behavioural results showed slower responses for both types of distortion compared to clear speech, and no difference between the two distortions. The neuroimaging results showed that, compared to clear speech, processing noise resulted in more activity bilaterally in Inferior Frontal Gyrus, Frontal Operculum, while processing accented speech recruited an area in left Superior Temporal Gyrus/Sulcus. It is concluded that the neural bases for processing different distortions of the speech signal dissociate. It is suggested that current models of the cortical organisation of speech are updated to specifically associate bilateral inferior frontal areas with processing external distortions (e.g., background noise) and left temporal areas with speaker-related distortions (e.g., accents).Additional information
Adank_2012_Suppl_Info.doc -
Baggio, G., Van Lambalgen, M., & Hagoort, P. (2012). Language, linguistics and cognition. In R. Kempson, T. Fernando, & N. Asher (
Eds. ), Philosophy of linguistics (pp. 325-356). Amsterdam: North Holland.Abstract
This chapter provides a partial overview of some currently debated issues in the cognitive science of language. We distinguish two families of problems, which we refer to as ‘language and cognition’ and ‘linguistics and cognition’. Under the first heading we present and discuss the hypothesis that language, in particular the semantics of tense and aspect, is grounded in the planning system. We emphasize the role of non-monotonic inference during language comprehension. We look at the converse issue of the role of linguistic interpretation in reasoning tasks. Under the second heading we investigate the two foremost assumptions of current linguistic methodology, namely intuitions as the only adequate empirical basis of theories of meaning and grammar and the competence-performance distinction, arguing that these are among the heaviest burdens for a truly comprehensive approach to language. Marr’s three-level scheme is proposed as an alternative methodological framework, which we apply in a review of two ERP studies on semantic processing, to the ‘binding problem’ for language, and in a conclusive set of remarks on relating theories in the cognitive science of language. -
Baggio, G., Van Lambalgen, M., & Hagoort, P. (2012). The processing consequences of compositionality. In M. Werning, W. Hinzen, & E. Machery (
Eds. ), The Oxford handbook of compositionality (pp. 655-672). New York: Oxford University Press. -
Fitch, W. T., Friederici, A. D., & Hagoort, P. (
Eds. ). (2012). Pattern perception and computational complexity [Special Issue]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367 (1598). -
Fitch, W. T., Friederici, A. D., & Hagoort, P. (2012). Pattern perception and computational complexity: Introduction to the special issue. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367 (1598), 1925-1932. doi:10.1098/rstb.2012.0099.
Abstract
Research on pattern perception and rule learning, grounded in formal language theory (FLT) and using artificial grammar learning paradigms, has exploded in the last decade. This approach marries empirical research conducted by neuroscientists, psychologists and ethologists with the theory of computation and FLT, developed by mathematicians, linguists and computer scientists over the last century. Of particular current interest are comparative extensions of this work to non-human animals, and neuroscientific investigations using brain imaging techniques. We provide a short introduction to the history of these fields, and to some of the dominant hypotheses, to help contextualize these ongoing research programmes, and finally briefly introduce the papers in the current issue. -
Hagoort, P. (2012). From ants to music and language [Preface]. In A. D. Patel, Music, language, and the brain [Chinese translation] (pp. 9-10). Shanghai: East China Normal University Press Ltd.
-
Hagoort, P. (2012). Het muzikale brein. Speling: Tijdschrift voor bezinning. Muziek als bron van bezieling, 64(1), 44-48.
-
Hagoort, P. (2012). Het sprekende brein. MemoRad, 17(1), 27-30.
Abstract
Geen andere soort dan homo sapiens heeft in de loop van zijn evolutionaire geschiedenis een communicatiesysteem ontwikkeld waarin een eindig aantal symbolen samen met een reeks van regels voor het combineren daarvan een oneindig aantal uitdrukkingen mogelijk maakt. Dit natuurlijke taalsysteem stelt leden van onze soort in staat gedachten een uiterlijke vorm te geven en uit te wisselen met de sociale groep en, door de uitvinding van schriftsystemen, met de gehele samenleving. Spraak en taal zijn effectieve middelen voor het behoud van sociale cohesie in samenlevingen waarvan de groepsgrootte en de complexe sociale organisatie van dien aard is dat dit niet langer kan door middel van ‘vlooien’, de wijze waarop onze genetische buren, de primaten van de oude wereld, sociale cohesie bevorderen [1,2]. -
Holler, J., Kelly, S., Hagoort, P., & Ozyurek, A. (2012). When gestures catch the eye: The influence of gaze direction on co-speech gesture comprehension in triadic communication. In N. Miyake, D. Peebles, & R. P. Cooper (
Eds. ), Proceedings of the 34th Annual Meeting of the Cognitive Science Society (CogSci 2012) (pp. 467-472). Austin, TX: Cognitive Society. Retrieved from http://mindmodeling.org/cogsci2012/papers/0092/index.html.Abstract
Co-speech gestures are an integral part of human face-to-face communication, but little is known about how pragmatic factors influence our comprehension of those gestures. The present study investigates how different types of recipients process iconic gestures in a triadic communicative situation. Participants (N = 32) took on the role of one of two recipients in a triad and were presented with 160 video clips of an actor speaking, or speaking and gesturing. Crucially, the actor’s eye gaze was manipulated in that she alternated her gaze between the two recipients. Participants thus perceived some messages in the role of addressed recipient and some in the role of unaddressed recipient. In these roles, participants were asked to make judgements concerning the speaker’s messages. Their reaction times showed that unaddressed recipients did comprehend speaker’s gestures differently to addressees. The findings are discussed with respect to automatic and controlled processes involved in gesture comprehension. -
Junge, C., Cutler, A., & Hagoort, P. (2012). Electrophysiological evidence of early word learning. Neuropsychologia, 50, 3702-3712. doi:10.1016/j.neuropsychologia.2012.10.012.
Abstract
Around their first birthday infants begin to talk, yet they comprehend words long before. This study investigated the event-related potentials (ERP) responses of nine-month-olds on basic level picture-word pairings. After a familiarization phase of six picture-word pairings per semantic category, comprehension for novel exemplars was tested in a picture-word matching paradigm. ERPs time-locked to pictures elicited a modulation of the Negative Central (Nc) component, associated with visual attention and recognition. It was attenuated by category repetition as well as by the type-token ratio of picture context. ERPs time-locked to words in the training phase became more negative with repetition (N300-600), but there was no influence of picture type-token ratio, suggesting that infants have identified the concept of each picture before a word was presented. Results from the test phase provided clear support that infants integrated word meanings with (novel) picture context. Here, infants showed different ERP responses for words that did or did not align with the picture context: a phonological mismatch (N200) and a semantic mismatch (N400). Together, results were informative of visual categorization, word recognition and word-to-world-mappings, all three crucial processes for vocabulary construction. -
Junge, C., Kooijman, V., Hagoort, P., & Cutler, A. (2012). Rapid recognition at 10 months as a predictor of language development. Developmental Science, 15, 463-473. doi:10.1111/j.1467-7687.2012.1144.x.
Abstract
Infants’ ability to recognize words in continuous speech is vital for building a vocabulary.We here examined the amount and type
of exposure needed for 10-month-olds to recognize words. Infants first heard a word, either embedded within an utterance or in
isolation, then recognition was assessed by comparing event-related potentials to this word versus a word that they had not heard
directly before. Although all 10-month-olds showed recognition responses to words first heard in isolation, not all infants showed
such responses to words they had first heard within an utterance. Those that did succeed in the latter, harder, task, however,
understood more words and utterances when re-tested at 12 months, and understood more words and produced more words at
24 months, compared with those who had shown no such recognition response at 10 months. The ability to rapidly recognize the
words in continuous utterances is clearly linked to future language development. -
Kos, M., Van den Brink, D., Snijders, T. M., Rijpkema, M., Franke, B., Fernandez, G., Hagoort, P., & Whitehouse, A. (2012). CNTNAP2 and language processing in healthy individuals as measured with ERPs. PLoS One, 7(10), e46995. doi:10.1371/journal.pone.0046995.
Abstract
The genetic FOXP2-CNTNAP2 pathway has been shown to be involved in the language capacity. We investigated whether a common variant of CNTNAP2 (rs7794745) is relevant for syntactic and semantic processing in the general population by using a visual sentence processing paradigm while recording ERPs in 49 healthy adults. While both AA homozygotes and T-carriers showed a standard N400 effect to semantic anomalies, the response to subject-verb agreement violations differed across genotype groups. T-carriers displayed an anterior negativity preceding the P600 effect, whereas for the AA group only a P600 effect was observed. These results provide another piece of evidence that the neuronal architecture of the human faculty of language is shaped differently by effects that are genetically determined. -
Kos, M., Van den Brink, D., & Hagoort, P. (2012). Individual variation in the late positive complex to semantic anomalies. Frontiers in Psychology, 3, 318. doi:10.3389/fpsyg.2012.00318.
Abstract
It is well-known that, within ERP paradigms of sentence processing, semantically anomalous words elicit N400 effects. Less clear, however, is what happens after the N400. In some cases N400 effects are followed by Late Positive Complexes (LPC), whereas in other cases such effects are lacking. We investigated several factors which could affect the LPC, such as contextual constraint, inter-individual variation and working memory. Seventy-two participants read sentences containing a semantic manipulation (Whipped cream tastes sweet/anxious and creamy). Neither contextual constraint nor working memory correlated with the LPC. Inter-individual variation played a substantial role in the elicitation of the LPC with about half of the participants showing a negative response and the other half showing an LPC. This individual variation correlated with a syntactic ERP as well as an alternative semantic manipulation. In conclusion, our results show that inter-individual variation plays a large role in the elicitation of the LPC and this may account for the diversity in LPC findings in language research. -
Lai, V. T., Hagoort, P., & Casasanto, D. (2012). Affective primacy vs. cognitive primacy: Dissolving the debate. Frontiers in Psychology, 3, 243. doi:10.3389/fpsyg.2012.00243.
Abstract
When people see a snake, they are likely to activate both affective information (e.g., dangerous) and non-affective information about its ontological category (e.g., animal). According to the Affective Primacy Hypothesis, the affective information has priority, and its activation can precede identification of the ontological category of a stimulus. Alternatively, according to the Cognitive Primacy Hypothesis, perceivers must know what they are looking at before they can make an affective judgment about it. We propose that neither hypothesis holds at all times. Here we show that the relative speed with which affective and non-affective information gets activated by pictures and words depends upon the contexts in which stimuli are processed. Results illustrate that the question of whether affective information has processing priority over ontological information (or vice versa) is ill posed. Rather than seeking to resolve the debate over Cognitive vs. Affective Primacy in favor of one hypothesis or the other, a more productive goal may be to determine the factors that cause affective information to have processing priority in some circumstances and ontological information in others. Our findings support a view of the mind according to which words and pictures activate different neurocognitive representations every time they are processed, the specifics of which are co-determined by the stimuli themselves and the contexts in which they occur. -
Menenti, L., Petersson, K. M., & Hagoort, P. (2012). From reference to sense: How the brain encodes meaning for speaking. Frontiers in Psychology, 2, 384. doi:10.3389/fpsyg.2011.00384.
Abstract
In speaking, semantic encoding is the conversion of a non-verbal mental representation (the reference) into a semantic structure suitable for expression (the sense). In this fMRI study on sentence production we investigate how the speaking brain accomplishes this transition from non-verbal to verbal representations. In an overt picture description task, we manipulated repetition of sense (the semantic structure of the sentence) and reference (the described situation) separately. By investigating brain areas showing response adaptation to repetition of each of these sentence properties, we disentangle the neuronal infrastructure for these two components of semantic encoding. We also performed a control experiment with the same stimuli and design but without any linguistic task to identify areas involved in perception of the stimuli per se. The bilateral inferior parietal lobes were selectively sensitive to repetition of reference, while left inferior frontal gyrus showed selective suppression to repetition of sense. Strikingly, a widespread network of areas associated with language processing (left middle frontal gyrus, bilateral superior parietal lobes and bilateral posterior temporal gyri) all showed repetition suppression to both sense and reference processing. These areas are probably involved in mapping reference onto sense, the crucial step in semantic encoding. These results enable us to track the transition from non-verbal to verbal representations in our brains.
Share this page